Spaces:
Runtime error
Runtime error
Prgckwb
commited on
Commit
·
d9d3f4b
1
Parent(s):
e603ef9
:tada: init
Browse files
app.py
CHANGED
|
@@ -6,13 +6,15 @@ from transformers import AutoTokenizer, CLIPTokenizerFast, T5TokenizerFast
|
|
| 6 |
|
| 7 |
def load_tokenizers(model_id: str) -> list[CLIPTokenizerFast | T5TokenizerFast | None]:
|
| 8 |
config = DiffusionPipeline.load_config(model_id)
|
| 9 |
-
num_tokenizers = sum(
|
| 10 |
|
| 11 |
if not 1 <= num_tokenizers <= 3:
|
| 12 |
-
raise gr.Error(f
|
| 13 |
|
| 14 |
tokenizers = [
|
| 15 |
-
AutoTokenizer.from_pretrained(
|
|
|
|
|
|
|
| 16 |
for i in range(num_tokenizers)
|
| 17 |
]
|
| 18 |
|
|
@@ -22,7 +24,7 @@ def load_tokenizers(model_id: str) -> list[CLIPTokenizerFast | T5TokenizerFast |
|
|
| 22 |
return tokenizers
|
| 23 |
|
| 24 |
|
| 25 |
-
@torch.
|
| 26 |
def inference(model_id: str, input_text: str):
|
| 27 |
tokenizers = load_tokenizers(model_id)
|
| 28 |
|
|
@@ -30,17 +32,19 @@ def inference(model_id: str, input_text: str):
|
|
| 30 |
special_tokens_components = []
|
| 31 |
for i, tokenizer in enumerate(tokenizers):
|
| 32 |
if tokenizer:
|
| 33 |
-
label_text = f
|
| 34 |
|
| 35 |
# テキストとトークンIDのペアを作成
|
| 36 |
input_ids = tokenizer(
|
| 37 |
text=input_text,
|
| 38 |
truncation=True,
|
| 39 |
return_length=False,
|
| 40 |
-
return_overflowing_tokens=False
|
| 41 |
).input_ids
|
| 42 |
decoded_tokens = [tokenizer.decode(id_) for id_ in input_ids]
|
| 43 |
-
token_pairs = [
|
|
|
|
|
|
|
| 44 |
output_text_pair_component = gr.HighlightedText(
|
| 45 |
label=label_text,
|
| 46 |
value=token_pairs,
|
|
@@ -51,7 +55,7 @@ def inference(model_id: str, input_text: str):
|
|
| 51 |
# スペシャルトークンを追加
|
| 52 |
special_tokens = []
|
| 53 |
for k, v in tokenizer.special_tokens_map.items():
|
| 54 |
-
if k ==
|
| 55 |
continue
|
| 56 |
special_token_map = (str(k), str(v))
|
| 57 |
special_tokens.append(special_token_map)
|
|
@@ -71,7 +75,7 @@ def inference(model_id: str, input_text: str):
|
|
| 71 |
return text_pairs_components + special_tokens_components
|
| 72 |
|
| 73 |
|
| 74 |
-
if __name__ ==
|
| 75 |
theme = gr.themes.Soft(
|
| 76 |
primary_hue=gr.themes.colors.emerald,
|
| 77 |
secondary_hue=gr.themes.colors.emerald,
|
|
@@ -79,29 +83,29 @@ if __name__ == '__main__':
|
|
| 79 |
with gr.Blocks(theme=theme) as demo:
|
| 80 |
with gr.Column():
|
| 81 |
input_model_id = gr.Dropdown(
|
| 82 |
-
label=
|
| 83 |
choices=[
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
],
|
| 92 |
-
value=
|
| 93 |
)
|
| 94 |
input_text = gr.Textbox(
|
| 95 |
-
label=
|
| 96 |
-
placeholder=
|
| 97 |
)
|
| 98 |
|
| 99 |
-
with gr.Tab(label=
|
| 100 |
with gr.Column():
|
| 101 |
output_highlighted_text_1 = gr.HighlightedText()
|
| 102 |
output_highlighted_text_2 = gr.HighlightedText()
|
| 103 |
output_highlighted_text_3 = gr.HighlightedText()
|
| 104 |
-
with gr.Tab(label=
|
| 105 |
with gr.Column():
|
| 106 |
output_special_tokens_1 = gr.HighlightedText()
|
| 107 |
output_special_tokens_2 = gr.HighlightedText()
|
|
@@ -109,7 +113,7 @@ if __name__ == '__main__':
|
|
| 109 |
|
| 110 |
with gr.Row():
|
| 111 |
clear_button = gr.ClearButton(components=[input_text])
|
| 112 |
-
submit_button = gr.Button(
|
| 113 |
|
| 114 |
all_inputs = [input_model_id, input_text]
|
| 115 |
all_output = [
|
|
@@ -120,22 +124,21 @@ if __name__ == '__main__':
|
|
| 120 |
output_special_tokens_2,
|
| 121 |
output_special_tokens_3,
|
| 122 |
]
|
| 123 |
-
submit_button.click(
|
| 124 |
-
fn=inference,
|
| 125 |
-
inputs=all_inputs,
|
| 126 |
-
outputs=all_output
|
| 127 |
-
)
|
| 128 |
|
| 129 |
examples = gr.Examples(
|
| 130 |
fn=inference,
|
| 131 |
inputs=all_inputs,
|
| 132 |
outputs=all_output,
|
| 133 |
examples=[
|
| 134 |
-
[
|
| 135 |
-
[
|
| 136 |
-
|
|
|
|
|
|
|
|
|
|
| 137 |
],
|
| 138 |
-
cache_examples=True
|
| 139 |
)
|
| 140 |
|
| 141 |
demo.queue().launch()
|
|
|
|
| 6 |
|
| 7 |
def load_tokenizers(model_id: str) -> list[CLIPTokenizerFast | T5TokenizerFast | None]:
|
| 8 |
config = DiffusionPipeline.load_config(model_id)
|
| 9 |
+
num_tokenizers = sum("tokenizer" in key for key in config.keys())
|
| 10 |
|
| 11 |
if not 1 <= num_tokenizers <= 3:
|
| 12 |
+
raise gr.Error(f"Invalid number of tokenizers: {num_tokenizers}")
|
| 13 |
|
| 14 |
tokenizers = [
|
| 15 |
+
AutoTokenizer.from_pretrained(
|
| 16 |
+
model_id, subfolder=f'tokenizer{"" if i == 0 else f"_{i + 1}"}'
|
| 17 |
+
)
|
| 18 |
for i in range(num_tokenizers)
|
| 19 |
]
|
| 20 |
|
|
|
|
| 24 |
return tokenizers
|
| 25 |
|
| 26 |
|
| 27 |
+
@torch.no_grad()
|
| 28 |
def inference(model_id: str, input_text: str):
|
| 29 |
tokenizers = load_tokenizers(model_id)
|
| 30 |
|
|
|
|
| 32 |
special_tokens_components = []
|
| 33 |
for i, tokenizer in enumerate(tokenizers):
|
| 34 |
if tokenizer:
|
| 35 |
+
label_text = f"Tokenizer {i + 1}: {tokenizer.__class__.__name__}"
|
| 36 |
|
| 37 |
# テキストとトークンIDのペアを作成
|
| 38 |
input_ids = tokenizer(
|
| 39 |
text=input_text,
|
| 40 |
truncation=True,
|
| 41 |
return_length=False,
|
| 42 |
+
return_overflowing_tokens=False,
|
| 43 |
).input_ids
|
| 44 |
decoded_tokens = [tokenizer.decode(id_) for id_ in input_ids]
|
| 45 |
+
token_pairs = [
|
| 46 |
+
(str(token), str(id_)) for token, id_ in zip(decoded_tokens, input_ids)
|
| 47 |
+
]
|
| 48 |
output_text_pair_component = gr.HighlightedText(
|
| 49 |
label=label_text,
|
| 50 |
value=token_pairs,
|
|
|
|
| 55 |
# スペシャルトークンを追加
|
| 56 |
special_tokens = []
|
| 57 |
for k, v in tokenizer.special_tokens_map.items():
|
| 58 |
+
if k == "additional_special_tokens":
|
| 59 |
continue
|
| 60 |
special_token_map = (str(k), str(v))
|
| 61 |
special_tokens.append(special_token_map)
|
|
|
|
| 75 |
return text_pairs_components + special_tokens_components
|
| 76 |
|
| 77 |
|
| 78 |
+
if __name__ == "__main__":
|
| 79 |
theme = gr.themes.Soft(
|
| 80 |
primary_hue=gr.themes.colors.emerald,
|
| 81 |
secondary_hue=gr.themes.colors.emerald,
|
|
|
|
| 83 |
with gr.Blocks(theme=theme) as demo:
|
| 84 |
with gr.Column():
|
| 85 |
input_model_id = gr.Dropdown(
|
| 86 |
+
label="Model ID",
|
| 87 |
choices=[
|
| 88 |
+
"black-forest-labs/FLUX.1-dev",
|
| 89 |
+
"black-forest-labs/FLUX.1-schnell",
|
| 90 |
+
"stabilityai/stable-diffusion-3-medium-diffusers",
|
| 91 |
+
"stabilityai/stable-diffusion-xl-base-1.0",
|
| 92 |
+
"stable-diffusion-v1-5/stable-diffusion-v1-5",
|
| 93 |
+
"stabilityai/japanese-stable-diffusion-xl",
|
| 94 |
+
"rinna/japanese-stable-diffusion",
|
| 95 |
],
|
| 96 |
+
value="black-forest-labs/FLUX.1-dev",
|
| 97 |
)
|
| 98 |
input_text = gr.Textbox(
|
| 99 |
+
label="Input Text",
|
| 100 |
+
placeholder="Enter text here",
|
| 101 |
)
|
| 102 |
|
| 103 |
+
with gr.Tab(label="Tokenization Outputs"):
|
| 104 |
with gr.Column():
|
| 105 |
output_highlighted_text_1 = gr.HighlightedText()
|
| 106 |
output_highlighted_text_2 = gr.HighlightedText()
|
| 107 |
output_highlighted_text_3 = gr.HighlightedText()
|
| 108 |
+
with gr.Tab(label="Special Tokens"):
|
| 109 |
with gr.Column():
|
| 110 |
output_special_tokens_1 = gr.HighlightedText()
|
| 111 |
output_special_tokens_2 = gr.HighlightedText()
|
|
|
|
| 113 |
|
| 114 |
with gr.Row():
|
| 115 |
clear_button = gr.ClearButton(components=[input_text])
|
| 116 |
+
submit_button = gr.Button("Run", variant="primary")
|
| 117 |
|
| 118 |
all_inputs = [input_model_id, input_text]
|
| 119 |
all_output = [
|
|
|
|
| 124 |
output_special_tokens_2,
|
| 125 |
output_special_tokens_3,
|
| 126 |
]
|
| 127 |
+
submit_button.click(fn=inference, inputs=all_inputs, outputs=all_output)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
|
| 129 |
examples = gr.Examples(
|
| 130 |
fn=inference,
|
| 131 |
inputs=all_inputs,
|
| 132 |
outputs=all_output,
|
| 133 |
examples=[
|
| 134 |
+
["black-forest-labs/FLUX.1-dev", "a photo of cat"],
|
| 135 |
+
[
|
| 136 |
+
"stabilityai/stable-diffusion-3-medium-diffusers",
|
| 137 |
+
'cat holding sign saying "I am a cat"',
|
| 138 |
+
],
|
| 139 |
+
["rinna/japanese-stable-diffusion", "空を飛んでいるネコの写真 油絵"],
|
| 140 |
],
|
| 141 |
+
cache_examples=True,
|
| 142 |
)
|
| 143 |
|
| 144 |
demo.queue().launch()
|