""" Cache Manager for Data Science Copilot Uses SQLite for persistent caching with hierarchical support. Supports individual tool result caching and cache warming. """ import hashlib import json import sqlite3 import time from pathlib import Path from typing import Any, Optional, Dict, List import pickle class CacheManager: """ Manages caching of LLM responses and expensive computations. Features: - Hierarchical caching: file_hash → [profile, quality, features, etc.] - Individual tool result caching (not full workflows) - Cache warming on file upload - TTL-based invalidation """ def __init__(self, db_path: str = "./cache_db/cache.db", ttl_seconds: int = 86400): """ Initialize cache manager. Args: db_path: Path to SQLite database file ttl_seconds: Time-to-live for cache entries (default 24 hours) """ self.db_path = Path(db_path) self.ttl_seconds = ttl_seconds # Ensure cache directory exists self.db_path.parent.mkdir(parents=True, exist_ok=True) # Initialize database self._init_db() def _init_db(self) -> None: """Create cache tables if they don't exist.""" try: conn = sqlite3.connect(self.db_path) cursor = conn.cursor() # Main cache table for individual tool results cursor.execute(""" CREATE TABLE IF NOT EXISTS cache ( key TEXT PRIMARY KEY, value BLOB NOT NULL, created_at INTEGER NOT NULL, expires_at INTEGER NOT NULL, metadata TEXT ) """) # Hierarchical cache table for file-based operations cursor.execute(""" CREATE TABLE IF NOT EXISTS hierarchical_cache ( file_hash TEXT NOT NULL, tool_name TEXT NOT NULL, tool_args TEXT, result BLOB NOT NULL, created_at INTEGER NOT NULL, expires_at INTEGER NOT NULL, PRIMARY KEY (file_hash, tool_name, tool_args) ) """) # Create indices for efficient lookup cursor.execute(""" CREATE INDEX IF NOT EXISTS idx_expires_at ON cache(expires_at) """) cursor.execute(""" CREATE INDEX IF NOT EXISTS idx_file_hash ON hierarchical_cache(file_hash) """) cursor.execute(""" CREATE INDEX IF NOT EXISTS idx_hierarchical_expires ON hierarchical_cache(expires_at) """) conn.commit() conn.close() print(f"✅ Cache database initialized at {self.db_path}") except Exception as e: print(f"⚠️ Error initializing cache database: {e}") print(f" Attempting to recreate database...") try: # Remove corrupted database and recreate if self.db_path.exists(): self.db_path.unlink() conn = sqlite3.connect(self.db_path) cursor = conn.cursor() cursor.execute(""" CREATE TABLE cache ( key TEXT PRIMARY KEY, value BLOB NOT NULL, created_at INTEGER NOT NULL, expires_at INTEGER NOT NULL, metadata TEXT ) """) cursor.execute(""" CREATE TABLE hierarchical_cache ( file_hash TEXT NOT NULL, tool_name TEXT NOT NULL, tool_args TEXT, result BLOB NOT NULL, created_at INTEGER NOT NULL, expires_at INTEGER NOT NULL, PRIMARY KEY (file_hash, tool_name, tool_args) ) """) cursor.execute(""" CREATE INDEX idx_expires_at ON cache(expires_at) """) cursor.execute(""" CREATE INDEX idx_file_hash ON hierarchical_cache(file_hash) """) cursor.execute(""" CREATE INDEX idx_hierarchical_expires ON hierarchical_cache(expires_at) """) conn.commit() conn.close() print(f"✅ Cache database recreated successfully") except Exception as e2: print(f"❌ Failed to recreate cache database: {e2}") print(f" Cache functionality will be disabled") def _generate_key(self, *args, **kwargs) -> str: """ Generate a unique cache key from arguments. Args: *args: Positional arguments to hash **kwargs: Keyword arguments to hash Returns: MD5 hash of the arguments """ # Combine args and kwargs into a single string key_data = json.dumps({"args": args, "kwargs": kwargs}, sort_keys=True) return hashlib.md5(key_data.encode()).hexdigest() def get(self, key: str) -> Optional[Any]: """ Retrieve value from cache. Args: key: Cache key Returns: Cached value if exists and not expired, None otherwise """ try: conn = sqlite3.connect(self.db_path) cursor = conn.cursor() current_time = int(time.time()) cursor.execute(""" SELECT value, expires_at FROM cache WHERE key = ? AND expires_at > ? """, (key, current_time)) result = cursor.fetchone() conn.close() except sqlite3.OperationalError as e: print(f"⚠️ Cache read error: {e}") print(f" Reinitializing cache database...") self._init_db() return None except Exception as e: print(f"⚠️ Unexpected cache error: {e}") return None if result: value_blob, expires_at = result # Deserialize using pickle for complex Python objects return pickle.loads(value_blob) return None def set(self, key: str, value: Any, ttl_override: Optional[int] = None, metadata: Optional[dict] = None) -> None: """ Store value in cache. Args: key: Cache key value: Value to cache (must be pickleable) ttl_override: Optional override for TTL (seconds) metadata: Optional metadata to store with cache entry """ try: conn = sqlite3.connect(self.db_path) cursor = conn.cursor() current_time = int(time.time()) ttl = ttl_override if ttl_override is not None else self.ttl_seconds expires_at = current_time + ttl # Serialize value using pickle value_blob = pickle.dumps(value) # Serialize metadata as JSON metadata_json = json.dumps(metadata) if metadata else None cursor.execute(""" INSERT OR REPLACE INTO cache (key, value, created_at, expires_at, metadata) VALUES (?, ?, ?, ?, ?) """, (key, value_blob, current_time, expires_at, metadata_json)) conn.commit() conn.close() except sqlite3.OperationalError as e: print(f"⚠️ Cache write error: {e}") print(f" Reinitializing cache database...") self._init_db() except Exception as e: print(f"⚠️ Unexpected cache error during write: {e}") def invalidate(self, key: str) -> bool: """ Remove specific entry from cache. Args: key: Cache key to invalidate Returns: True if entry was removed, False if not found """ conn = sqlite3.connect(self.db_path) cursor = conn.cursor() cursor.execute("DELETE FROM cache WHERE key = ?", (key,)) deleted = cursor.rowcount > 0 conn.commit() conn.close() return deleted def clear_expired(self) -> int: """ Remove all expired entries from cache. Returns: Number of entries removed """ conn = sqlite3.connect(self.db_path) cursor = conn.cursor() current_time = int(time.time()) cursor.execute("DELETE FROM cache WHERE expires_at <= ?", (current_time,)) deleted = cursor.rowcount conn.commit() conn.close() return deleted def clear_all(self) -> None: """Remove all entries from cache.""" conn = sqlite3.connect(self.db_path) cursor = conn.cursor() cursor.execute("DELETE FROM cache") conn.commit() conn.close() def get_stats(self) -> dict: """ Get cache statistics. Returns: Dictionary with cache stats (total entries, expired, size) """ conn = sqlite3.connect(self.db_path) cursor = conn.cursor() current_time = int(time.time()) # Total entries cursor.execute("SELECT COUNT(*) FROM cache") total = cursor.fetchone()[0] # Valid entries cursor.execute("SELECT COUNT(*) FROM cache WHERE expires_at > ?", (current_time,)) valid = cursor.fetchone()[0] # Database size cursor.execute("SELECT page_count * page_size FROM pragma_page_count(), pragma_page_size()") size_bytes = cursor.fetchone()[0] conn.close() return { "total_entries": total, "valid_entries": valid, "expired_entries": total - valid, "size_mb": round(size_bytes / (1024 * 1024), 2) } def generate_file_hash(self, file_path: str) -> str: """ Generate hash of file contents for cache key. Args: file_path: Path to file Returns: MD5 hash of file contents """ hasher = hashlib.md5() with open(file_path, 'rb') as f: # Read file in chunks to handle large files for chunk in iter(lambda: f.read(4096), b""): hasher.update(chunk) return hasher.hexdigest() # ======================================== # HIERARCHICAL CACHING (NEW) # ======================================== def get_tool_result(self, file_hash: str, tool_name: str, tool_args: Dict[str, Any] = None) -> Optional[Any]: """ Get cached result for a specific tool applied to a file. Args: file_hash: MD5 hash of the file tool_name: Name of the tool tool_args: Arguments passed to the tool (excluding file_path) Returns: Cached tool result if exists and not expired, None otherwise """ try: conn = sqlite3.connect(self.db_path) cursor = conn.cursor() current_time = int(time.time()) tool_args_str = json.dumps(tool_args or {}, sort_keys=True) cursor.execute(""" SELECT result, expires_at FROM hierarchical_cache WHERE file_hash = ? AND tool_name = ? AND tool_args = ? AND expires_at > ? """, (file_hash, tool_name, tool_args_str, current_time)) result = cursor.fetchone() conn.close() if result: result_blob, expires_at = result cached_result = pickle.loads(result_blob) print(f"📦 Cache HIT: {tool_name} for file {file_hash[:8]}...") return cached_result else: print(f"📭 Cache MISS: {tool_name} for file {file_hash[:8]}...") return None except Exception as e: print(f"⚠️ Hierarchical cache read error: {e}") return None def set_tool_result(self, file_hash: str, tool_name: str, result: Any, tool_args: Dict[str, Any] = None, ttl_override: Optional[int] = None) -> None: """ Cache result for a specific tool applied to a file. Args: file_hash: MD5 hash of the file tool_name: Name of the tool result: Tool result to cache tool_args: Arguments passed to the tool (excluding file_path) ttl_override: Optional override for TTL (seconds) """ try: conn = sqlite3.connect(self.db_path) cursor = conn.cursor() current_time = int(time.time()) ttl = ttl_override if ttl_override is not None else self.ttl_seconds expires_at = current_time + ttl tool_args_str = json.dumps(tool_args or {}, sort_keys=True) result_blob = pickle.dumps(result) cursor.execute(""" INSERT OR REPLACE INTO hierarchical_cache (file_hash, tool_name, tool_args, result, created_at, expires_at) VALUES (?, ?, ?, ?, ?, ?) """, (file_hash, tool_name, tool_args_str, result_blob, current_time, expires_at)) conn.commit() conn.close() print(f"💾 Cached: {tool_name} for file {file_hash[:8]}...") except Exception as e: print(f"⚠️ Hierarchical cache write error: {e}") def get_all_tool_results_for_file(self, file_hash: str) -> Dict[str, Any]: """ Get all cached tool results for a specific file. Args: file_hash: MD5 hash of the file Returns: Dictionary mapping tool_name → result for all cached results """ try: conn = sqlite3.connect(self.db_path) cursor = conn.cursor() current_time = int(time.time()) cursor.execute(""" SELECT tool_name, tool_args, result FROM hierarchical_cache WHERE file_hash = ? AND expires_at > ? """, (file_hash, current_time)) results = {} for row in cursor.fetchall(): tool_name, tool_args_str, result_blob = row tool_args = json.loads(tool_args_str) result = pickle.loads(result_blob) # Create unique key for tool + args combination if tool_args: key = f"{tool_name}_{hashlib.md5(tool_args_str.encode()).hexdigest()[:8]}" else: key = tool_name results[key] = { "tool_name": tool_name, "tool_args": tool_args, "result": result } conn.close() if results: print(f"📦 Found {len(results)} cached results for file {file_hash[:8]}...") return results except Exception as e: print(f"⚠️ Error retrieving file cache results: {e}") return {} def warm_cache_for_file(self, file_path: str, tools_to_warm: List[str] = None) -> Dict[str, bool]: """ Warm cache by pre-computing common tool results for a file. This is typically called on file upload to speed up first analysis. Args: file_path: Path to the file tools_to_warm: List of tool names to pre-compute (defaults to basic profiling tools) Returns: Dictionary mapping tool_name → success status """ if tools_to_warm is None: # Default tools to warm: basic profiling operations tools_to_warm = [ "profile_dataset", "detect_data_quality_issues", "analyze_correlations" ] file_hash = self.generate_file_hash(file_path) results = {} print(f"🔥 Warming cache for file {file_hash[:8]}... ({len(tools_to_warm)} tools)") # Import here to avoid circular dependency from ..orchestrator import DataScienceOrchestrator try: # Create temporary orchestrator for cache warming orchestrator = DataScienceOrchestrator(use_cache=False) # Don't use cache during warming for tool_name in tools_to_warm: try: # Execute tool result = orchestrator._execute_tool(tool_name, {"file_path": file_path}) # Cache the result if result.get("success", True): self.set_tool_result(file_hash, tool_name, result) results[tool_name] = True print(f" ✓ Warmed: {tool_name}") else: results[tool_name] = False print(f" ✗ Failed: {tool_name}") except Exception as e: results[tool_name] = False print(f" ✗ Error warming {tool_name}: {e}") print(f"✅ Cache warming complete: {sum(results.values())}/{len(tools_to_warm)} successful") except Exception as e: print(f"❌ Cache warming failed: {e}") return results def invalidate_file_cache(self, file_hash: str) -> int: """ Invalidate all cached results for a specific file. Args: file_hash: MD5 hash of the file Returns: Number of entries invalidated """ try: conn = sqlite3.connect(self.db_path) cursor = conn.cursor() cursor.execute("DELETE FROM hierarchical_cache WHERE file_hash = ?", (file_hash,)) deleted = cursor.rowcount conn.commit() conn.close() if deleted > 0: print(f"🗑️ Invalidated {deleted} cached results for file {file_hash[:8]}...") return deleted except Exception as e: print(f"⚠️ Error invalidating file cache: {e}") return 0