File size: 9,107 Bytes
1315cad 2a66429 1315cad ba7fe05 1315cad ba7fe05 1315cad ba7fe05 1315cad ba7fe05 1315cad 2a66429 1315cad ba7fe05 1315cad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
from __future__ import annotations
import contextlib
import io
import os
from pathlib import Path
from typing import List, Tuple
import gradio as gr
import torch
import spaces
from dia2 import Dia2, GenerationConfig, SamplingConfig
DEFAULT_REPO = os.environ.get("DIA2_DEFAULT_REPO", "nari-labs/Dia2-2B")
MAX_TURNS = 10
INITIAL_TURNS = 2
_dia: Dia2 | None = None
def _get_dia() -> Dia2:
global _dia
if _dia is None:
_dia = Dia2.from_repo(DEFAULT_REPO, device="cuda", dtype="bfloat16")
return _dia
def _concat_script(turn_count: int, turn_values: List[str]) -> str:
lines: List[str] = []
for idx in range(min(turn_count, len(turn_values))):
text = (turn_values[idx] or "").strip()
if not text:
continue
speaker = "[S1]" if idx % 2 == 0 else "[S2]"
lines.append(f"{speaker} {text}")
return "\n".join(lines)
EXAMPLES: dict[str, dict[str, List[str] | str | None]] = {
"Intro": {
"turns": [
"Hello Dia2 fans! Today we're unveiling the new open TTS model.",
"Sounds exciting. Can you show a sample right now?",
"Absolutely. (laughs) Just press generate.",
],
"voice_s1": "example_prefix1.wav",
"voice_s2": "example_prefix2.wav",
},
"Customer Support": {
"turns": [
"Thanks for calling. How can I help you today?",
"My parcel never arrived and it's been two weeks.",
"I'm sorry about that. Let me check your tracking number.",
"Appreciate it. I really need that package soon.",
],
"voice_s1": "example_prefix1.wav",
"voice_s2": "example_prefix2.wav",
},
}
def _apply_turn_visibility(count: int) -> List[gr.Update]:
return [gr.update(visible=i < count) for i in range(MAX_TURNS)]
def _add_turn(count: int):
count = min(count + 1, MAX_TURNS)
return (count, *_apply_turn_visibility(count))
def _remove_turn(count: int):
count = max(1, count - 1)
return (count, *_apply_turn_visibility(count))
def _load_example(name: str, count: int):
data = EXAMPLES.get(name)
if not data:
return (count, *_apply_turn_visibility(count), None, None)
turns = data.get("turns", [])
voice_s1_path = data.get("voice_s1")
voice_s2_path = data.get("voice_s2")
new_count = min(len(turns), MAX_TURNS)
updates: List[gr.Update] = []
for idx in range(MAX_TURNS):
if idx < new_count:
updates.append(gr.update(value=turns[idx], visible=True))
else:
updates.append(gr.update(value="", visible=idx < INITIAL_TURNS))
return (new_count, *updates, voice_s1_path, voice_s2_path)
def _prepare_prefix(file_path: str | None) -> str | None:
if not file_path:
return None
path = Path(file_path)
if not path.exists():
return None
return str(path)
@spaces.GPU(duration=100)
def generate_audio(
turn_count: int,
*inputs,
):
turn_values = list(inputs[:MAX_TURNS])
voice_s1 = inputs[MAX_TURNS]
voice_s2 = inputs[MAX_TURNS + 1]
cfg_scale = float(inputs[MAX_TURNS + 2])
text_temperature = float(inputs[MAX_TURNS + 3])
audio_temperature = float(inputs[MAX_TURNS + 4])
text_top_k = int(inputs[MAX_TURNS + 5])
audio_top_k = int(inputs[MAX_TURNS + 6])
include_prefix = bool(inputs[MAX_TURNS + 7])
script = _concat_script(turn_count, turn_values)
if not script.strip():
raise gr.Error("Please enter at least one non-empty speaker turn.")
dia = _get_dia()
config = GenerationConfig(
cfg_scale=cfg_scale,
text=SamplingConfig(temperature=text_temperature, top_k=text_top_k),
audio=SamplingConfig(temperature=audio_temperature, top_k=audio_top_k),
use_cuda_graph=True,
)
kwargs = {
"prefix_speaker_1": _prepare_prefix(voice_s1),
"prefix_speaker_2": _prepare_prefix(voice_s2),
"include_prefix": include_prefix,
}
buffer = io.StringIO()
with contextlib.redirect_stdout(buffer):
result = dia.generate(
script,
config=config,
output_wav=None,
verbose=True,
**kwargs,
)
waveform = result.waveform.detach().cpu().numpy()
sample_rate = result.sample_rate
timestamps = result.timestamps
log_text = buffer.getvalue().strip()
table = [[w, round(t, 3)] for w, t in timestamps]
return (sample_rate, waveform), table, log_text or "Generation finished."
def build_interface() -> gr.Blocks:
with gr.Blocks(
title="Dia2 TTS", css=".compact-turn textarea {min-height: 60px}"
) as demo:
gr.Markdown(
"""## Dia2 — Open TTS Model
Compose dialogue, attach optional voice prompts, and generate audio (CUDA graphs enabled by default)."""
)
turn_state = gr.State(INITIAL_TURNS)
with gr.Row(equal_height=True):
example_dropdown = gr.Dropdown(
choices=["(select example)"] + list(EXAMPLES.keys()),
label="Examples",
value="(select example)",
)
with gr.Row(equal_height=True):
with gr.Column(scale=1):
with gr.Group():
gr.Markdown("### Script")
controls = []
for idx in range(MAX_TURNS):
speaker = "[S1]" if idx % 2 == 0 else "[S2]"
box = gr.Textbox(
label=f"{speaker} turn {idx + 1}",
lines=2,
elem_classes=["compact-turn"],
placeholder=f"Enter dialogue for {speaker}…",
visible=idx < INITIAL_TURNS,
)
controls.append(box)
with gr.Row():
add_btn = gr.Button("Add Turn")
remove_btn = gr.Button("Remove Turn")
with gr.Group():
gr.Markdown("### Voice Prompts")
with gr.Row():
voice_s1 = gr.File(
label="[S1] voice (wav/mp3)", type="filepath"
)
voice_s2 = gr.File(
label="[S2] voice (wav/mp3)", type="filepath"
)
with gr.Group():
gr.Markdown("### Sampling")
cfg_scale = gr.Slider(
1.0, 8.0, value=6.0, step=0.1, label="CFG Scale"
)
with gr.Group():
gr.Markdown("#### Text Sampling")
text_temperature = gr.Slider(
0.1, 1.5, value=0.6, step=0.05, label="Text Temperature"
)
text_top_k = gr.Slider(
1, 200, value=50, step=1, label="Text Top-K"
)
with gr.Group():
gr.Markdown("#### Audio Sampling")
audio_temperature = gr.Slider(
0.1, 1.5, value=0.8, step=0.05, label="Audio Temperature"
)
audio_top_k = gr.Slider(
1, 200, value=50, step=1, label="Audio Top-K"
)
include_prefix = gr.Checkbox(
label="Keep prefix audio in output", value=False
)
generate_btn = gr.Button("Generate", variant="primary")
with gr.Column(scale=1):
gr.Markdown("### Output")
audio_out = gr.Audio(label="Waveform", interactive=False)
timestamps = gr.Dataframe(
headers=["word", "seconds"], label="Timestamps"
)
log_box = gr.Textbox(label="Logs", lines=8)
add_btn.click(
lambda c: _add_turn(c),
inputs=turn_state,
outputs=[turn_state, *controls],
)
remove_btn.click(
lambda c: _remove_turn(c),
inputs=turn_state,
outputs=[turn_state, *controls],
)
example_dropdown.change(
lambda name, c: _load_example(name, c),
inputs=[example_dropdown, turn_state],
outputs=[turn_state, *controls, voice_s1, voice_s2],
)
generate_btn.click(
generate_audio,
inputs=[
turn_state,
*controls,
voice_s1,
voice_s2,
cfg_scale,
text_temperature,
audio_temperature,
text_top_k,
audio_top_k,
include_prefix,
],
outputs=[audio_out, timestamps, log_box],
)
return demo
if __name__ == "__main__":
app = build_interface()
app.queue(default_concurrency_limit=1)
app.launch(share=True)
|