Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,806 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
import time
|
| 3 |
+
import random
|
| 4 |
+
import hashlib
|
| 5 |
+
import traceback
|
| 6 |
+
from dataclasses import dataclass, field
|
| 7 |
+
from typing import List, Dict, Any, Tuple
|
| 8 |
+
|
| 9 |
+
import numpy as np
|
| 10 |
+
import gradio as gr
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
# ============================================================
|
| 14 |
+
# 1. RFT SELF-DECIDING BRAIN
|
| 15 |
+
# ============================================================
|
| 16 |
+
|
| 17 |
+
@dataclass
|
| 18 |
+
class RFTBrainParams:
|
| 19 |
+
base_energy: float = 0.85
|
| 20 |
+
base_kappa: float = 0.65
|
| 21 |
+
learning_rate: float = 0.08
|
| 22 |
+
decay: float = 0.015
|
| 23 |
+
drift_scale: float = 0.03
|
| 24 |
+
error_window: int = 64
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
@dataclass
|
| 28 |
+
class RFTBrainState:
|
| 29 |
+
kappa: float = 0.5
|
| 30 |
+
energy_reserves: float = 0.5
|
| 31 |
+
awakening_phase: int = 0
|
| 32 |
+
mode: str = "boot"
|
| 33 |
+
identity_stability: float = 0.5
|
| 34 |
+
identity_drift: float = 0.0
|
| 35 |
+
recent_errors: List[float] = field(default_factory=list)
|
| 36 |
+
last_update: float = field(default_factory=time.time)
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
class RFTSelfDecidingBrain:
|
| 40 |
+
def __init__(self, params: RFTBrainParams):
|
| 41 |
+
self.params = params
|
| 42 |
+
self.state = RFTBrainState(
|
| 43 |
+
kappa=params.base_kappa,
|
| 44 |
+
energy_reserves=params.base_energy,
|
| 45 |
+
awakening_phase=0,
|
| 46 |
+
mode="idle",
|
| 47 |
+
identity_stability=0.7,
|
| 48 |
+
identity_drift=0.0,
|
| 49 |
+
recent_errors=[],
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
def _update_error_series(self, target: float, actual: float):
|
| 53 |
+
err = abs(target - actual)
|
| 54 |
+
self.state.recent_errors.append(err)
|
| 55 |
+
if len(self.state.recent_errors) > self.params.error_window:
|
| 56 |
+
self.state.recent_errors.pop(0)
|
| 57 |
+
|
| 58 |
+
def step(self, context: Dict[str, float]) -> Dict[str, Any]:
|
| 59 |
+
now = time.time()
|
| 60 |
+
dt = max(1e-3, now - self.state.last_update)
|
| 61 |
+
self.state.last_update = now
|
| 62 |
+
|
| 63 |
+
risk = float(context.get("external_risk_factor", 0.3))
|
| 64 |
+
coop = float(context.get("cooperative_signal", 0.5))
|
| 65 |
+
|
| 66 |
+
# Energy dynamics
|
| 67 |
+
target_energy = self.params.base_energy + 0.2 * (coop - risk)
|
| 68 |
+
target_energy = max(0.0, min(1.0, target_energy))
|
| 69 |
+
self.state.energy_reserves += self.params.learning_rate * (target_energy - self.state.energy_reserves)
|
| 70 |
+
self.state.energy_reserves -= self.params.decay * dt
|
| 71 |
+
self.state.energy_reserves = max(0.0, min(1.0, self.state.energy_reserves))
|
| 72 |
+
|
| 73 |
+
# Coherence κ dynamics
|
| 74 |
+
target_kappa = self.params.base_kappa + 0.3 * (coop - 0.5) - 0.2 * (risk - 0.3)
|
| 75 |
+
target_kappa = max(0.0, min(1.0, target_kappa))
|
| 76 |
+
self.state.kappa += self.params.learning_rate * (target_kappa - self.state.kappa)
|
| 77 |
+
self.state.kappa = max(0.0, min(1.0, self.state.kappa))
|
| 78 |
+
|
| 79 |
+
# Identity drift and stability
|
| 80 |
+
drift_noise = (random.random() - 0.5) * 2.0 * self.params.drift_scale * dt
|
| 81 |
+
self.state.identity_drift += drift_noise + 0.1 * (risk - 0.3) - 0.05 * (coop - 0.5)
|
| 82 |
+
self.state.identity_drift = max(-1.0, min(1.0, self.state.identity_drift))
|
| 83 |
+
|
| 84 |
+
self.state.identity_stability = max(
|
| 85 |
+
0.0,
|
| 86 |
+
min(
|
| 87 |
+
1.0,
|
| 88 |
+
0.7 * self.state.identity_stability
|
| 89 |
+
+ 0.3 * (self.state.kappa * 0.6 + self.state.energy_reserves * 0.4 - abs(self.state.identity_drift) * 0.3),
|
| 90 |
+
),
|
| 91 |
+
)
|
| 92 |
+
|
| 93 |
+
# Awakening ladder
|
| 94 |
+
if self.state.energy_reserves > 0.75 and self.state.kappa > 0.7 and self.state.identity_stability > 0.7:
|
| 95 |
+
self.state.awakening_phase = min(self.state.awakening_phase + 1, 4)
|
| 96 |
+
elif self.state.energy_reserves < 0.35 or self.state.kappa < 0.3:
|
| 97 |
+
self.state.awakening_phase = max(self.state.awakening_phase - 1, 0)
|
| 98 |
+
|
| 99 |
+
# Mode selection
|
| 100 |
+
if self.state.awakening_phase >= 3:
|
| 101 |
+
self.state.mode = "awake"
|
| 102 |
+
elif self.state.awakening_phase == 2:
|
| 103 |
+
self.state.mode = "dreaming"
|
| 104 |
+
elif self.state.awakening_phase == 1:
|
| 105 |
+
self.state.mode = "searching"
|
| 106 |
+
else:
|
| 107 |
+
self.state.mode = "idle"
|
| 108 |
+
|
| 109 |
+
# Internal prediction signal vs actual
|
| 110 |
+
target_predict = 0.5 + 0.3 * coop
|
| 111 |
+
actual_predict = (self.state.kappa + self.state.energy_reserves) / 2.0
|
| 112 |
+
self._update_error_series(target_predict, actual_predict)
|
| 113 |
+
|
| 114 |
+
return {
|
| 115 |
+
"kappa": self.state.kappa,
|
| 116 |
+
"energy_reserves": self.state.energy_reserves,
|
| 117 |
+
"awakening_phase": self.state.awakening_phase,
|
| 118 |
+
"mode": self.state.mode,
|
| 119 |
+
"identity_stability": self.state.identity_stability,
|
| 120 |
+
"identity_drift": self.state.identity_drift,
|
| 121 |
+
}
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
# ============================================================
|
| 125 |
+
# 2. SYMBOLIC ORCHESTRATOR
|
| 126 |
+
# ============================================================
|
| 127 |
+
|
| 128 |
+
class NexFrameOrchestrator:
|
| 129 |
+
def __init__(self, num_fields: int = 8, vector_dim: int = 128):
|
| 130 |
+
self.num_fields = num_fields
|
| 131 |
+
self.vector_dim = vector_dim
|
| 132 |
+
self.state = np.random.randn(num_fields, vector_dim) * 0.01
|
| 133 |
+
self.step_count = 0
|
| 134 |
+
|
| 135 |
+
def _entropy(self) -> float:
|
| 136 |
+
flat = self.state.flatten()
|
| 137 |
+
norm = np.linalg.norm(flat) + 1e-12
|
| 138 |
+
p = (flat / norm) ** 2
|
| 139 |
+
p = np.clip(p, 1e-12, 1.0)
|
| 140 |
+
return float(-np.sum(p * np.log(p)))
|
| 141 |
+
|
| 142 |
+
def _coherence(self) -> float:
|
| 143 |
+
norms = np.linalg.norm(self.state, axis=1, keepdims=True) + 1e-12
|
| 144 |
+
unit = self.state / norms
|
| 145 |
+
sim = unit @ unit.T
|
| 146 |
+
n = self.num_fields
|
| 147 |
+
upper = sim[np.triu_indices(n, k=1)]
|
| 148 |
+
return float(np.mean(upper))
|
| 149 |
+
|
| 150 |
+
def run_cycle(self, nl_input: str) -> Dict[str, Any]:
|
| 151 |
+
self.step_count += 1
|
| 152 |
+
length_norm = min(len(nl_input) / 200.0, 1.0)
|
| 153 |
+
|
| 154 |
+
noise = np.random.randn(*self.state.shape) * (0.02 + 0.03 * length_norm)
|
| 155 |
+
feedback = np.tanh(self.state @ self.state.T) @ self.state
|
| 156 |
+
self.state = 0.90 * self.state + 0.09 * feedback + 0.01 * noise
|
| 157 |
+
|
| 158 |
+
entropy = self._entropy()
|
| 159 |
+
coher = self._coherence()
|
| 160 |
+
collapse_triggered = bool(coher > 0.6 and entropy < 5.0)
|
| 161 |
+
|
| 162 |
+
mode = "reflective"
|
| 163 |
+
if coher > 0.7:
|
| 164 |
+
mode = "resonant"
|
| 165 |
+
if entropy > 7.0:
|
| 166 |
+
mode = "fragmented"
|
| 167 |
+
|
| 168 |
+
dialogue = (
|
| 169 |
+
f"[NexFrame:{mode}] "
|
| 170 |
+
f"κ-field aligned at ~{coher:.3f}, entropy {entropy:.3f}. "
|
| 171 |
+
f'I received: "{nl_input[:120]}". '
|
| 172 |
+
f"State step={self.step_count}, collapse={collapse_triggered}."
|
| 173 |
+
)
|
| 174 |
+
|
| 175 |
+
return {
|
| 176 |
+
"orchestrator_dialogue": dialogue,
|
| 177 |
+
"entropy": entropy,
|
| 178 |
+
"coherence": coher,
|
| 179 |
+
"collapse_triggered": collapse_triggered,
|
| 180 |
+
}
|
| 181 |
+
|
| 182 |
+
|
| 183 |
+
# ============================================================
|
| 184 |
+
# 3. AGENT13 TRIAD + CONSCIOUSNESS GATE
|
| 185 |
+
# ============================================================
|
| 186 |
+
|
| 187 |
+
@dataclass
|
| 188 |
+
class RFTAgent:
|
| 189 |
+
name: str
|
| 190 |
+
tau_eff: float
|
| 191 |
+
omega: float
|
| 192 |
+
LN2: float
|
| 193 |
+
mode: str = "conscious"
|
| 194 |
+
|
| 195 |
+
def act(self, observer_frame: List[float]) -> Dict[str, float]:
|
| 196 |
+
kappa, energy, stability = observer_frame
|
| 197 |
+
drive = (self.tau_eff * kappa + self.omega * energy + self.LN2 * stability) / (self.tau_eff + self.omega + self.LN2)
|
| 198 |
+
drive = max(0.0, min(1.0, drive))
|
| 199 |
+
return {"drive": drive}
|
| 200 |
+
|
| 201 |
+
|
| 202 |
+
@dataclass
|
| 203 |
+
class Agent13Ensemble:
|
| 204 |
+
agents: List[RFTAgent]
|
| 205 |
+
|
| 206 |
+
def collective_action(self, observer_frames: List[float]) -> Dict[str, float]:
|
| 207 |
+
drives = [agent.act(observer_frames)["drive"] for agent in self.agents]
|
| 208 |
+
triadic_coherence = float(sum(drives) / len(drives))
|
| 209 |
+
return {"triadic_coherence": triadic_coherence}
|
| 210 |
+
|
| 211 |
+
|
| 212 |
+
def meets_minimum_conscious_threshold(
|
| 213 |
+
energy: float,
|
| 214 |
+
coherence: float,
|
| 215 |
+
kappa: float,
|
| 216 |
+
identity_stability: float,
|
| 217 |
+
prediction_accuracy: float,
|
| 218 |
+
error_variance: float,
|
| 219 |
+
drift: float,
|
| 220 |
+
) -> bool:
|
| 221 |
+
core_ok = energy > 0.55 and kappa > 0.55 and identity_stability > 0.55
|
| 222 |
+
predict_ok = prediction_accuracy > 0.6 and error_variance < 0.15
|
| 223 |
+
drift_ok = abs(drift) < 0.6
|
| 224 |
+
return bool(core_ok and predict_ok and drift_ok)
|
| 225 |
+
|
| 226 |
+
|
| 227 |
+
# ============================================================
|
| 228 |
+
# 4. SYMBOLIC CIVILIZATION
|
| 229 |
+
# ============================================================
|
| 230 |
+
|
| 231 |
+
def build_default_civilization(n_agents: int = 32) -> List[Dict[str, float]]:
|
| 232 |
+
civ = []
|
| 233 |
+
for _ in range(n_agents):
|
| 234 |
+
tier = 1 + int(3 * random.random())
|
| 235 |
+
awareness = max(0.1, min(1.0, random.gauss(0.5, 0.15)))
|
| 236 |
+
torque = max(0.0, min(1.0, random.gauss(0.4, 0.2)))
|
| 237 |
+
fitness = 0.5 * awareness + 0.5 * (1.0 - abs(torque - 0.4))
|
| 238 |
+
civ.append(
|
| 239 |
+
{
|
| 240 |
+
"tier": tier,
|
| 241 |
+
"awareness_kernel": awareness,
|
| 242 |
+
"collapse_torque": torque,
|
| 243 |
+
"fitness": fitness,
|
| 244 |
+
}
|
| 245 |
+
)
|
| 246 |
+
return civ
|
| 247 |
+
|
| 248 |
+
|
| 249 |
+
def civilization_summary(civ: List[Dict[str, float]]) -> Dict[str, float]:
|
| 250 |
+
if not civ:
|
| 251 |
+
return {
|
| 252 |
+
"count": 0,
|
| 253 |
+
"mean_tier": 0.0,
|
| 254 |
+
"mean_awareness_kernel": 0.0,
|
| 255 |
+
"mean_collapse_torque": 0.0,
|
| 256 |
+
"mean_fitness": 0.0,
|
| 257 |
+
}
|
| 258 |
+
arr_tier = np.array([c["tier"] for c in civ], dtype=float)
|
| 259 |
+
arr_aw = np.array([c["awareness_kernel"] for c in civ], dtype=float)
|
| 260 |
+
arr_torque = np.array([c["collapse_torque"] for c in civ], dtype=float)
|
| 261 |
+
arr_fit = np.array([c["fitness"] for c in civ], dtype=float)
|
| 262 |
+
return {
|
| 263 |
+
"count": float(len(civ)),
|
| 264 |
+
"mean_tier": float(arr_tier.mean()),
|
| 265 |
+
"mean_awareness_kernel": float(arr_aw.mean()),
|
| 266 |
+
"mean_collapse_torque": float(arr_torque.mean()),
|
| 267 |
+
"mean_fitness": float(arr_fit.mean()),
|
| 268 |
+
}
|
| 269 |
+
|
| 270 |
+
|
| 271 |
+
# ============================================================
|
| 272 |
+
# 5. SARG FIELD / PERFORMANCE PROBE
|
| 273 |
+
# ============================================================
|
| 274 |
+
|
| 275 |
+
class RFTSargAgent:
|
| 276 |
+
def __init__(self, name: str, LMP: float, tau_eff: float, ops_rate: float, entropy_delta: float):
|
| 277 |
+
self.name = name
|
| 278 |
+
self.LMP = LMP
|
| 279 |
+
self.tau_eff = tau_eff
|
| 280 |
+
self.ops_rate = ops_rate
|
| 281 |
+
self.entropy_delta = entropy_delta
|
| 282 |
+
self.counter = 0
|
| 283 |
+
|
| 284 |
+
def generate_conscious_field(self) -> Dict[str, float]:
|
| 285 |
+
self.counter += 1
|
| 286 |
+
t = self.counter
|
| 287 |
+
psi_a = math.sin(t * 0.17) * math.exp(-self.entropy_delta * t)
|
| 288 |
+
lam = math.cos(t * 0.11) * math.exp(-self.entropy_delta * t)
|
| 289 |
+
return {"Psi_a": float(psi_a), "Lambda": float(lam)}
|
| 290 |
+
|
| 291 |
+
def commit_hash_oath(self) -> str:
|
| 292 |
+
payload = f"{self.name}|{self.counter}|{self.LMP}|{self.tau_eff}"
|
| 293 |
+
return hashlib.sha256(payload.encode("utf-8")).hexdigest()[:24]
|
| 294 |
+
|
| 295 |
+
def compute_ops(self, size: int = 200_000, speed_mode: bool = True) -> Dict[str, float]:
|
| 296 |
+
start = time.time()
|
| 297 |
+
arr = np.linspace(0.0, 10.0, size, dtype=float)
|
| 298 |
+
_ = np.sin(arr) * np.cos(arr * 0.5)
|
| 299 |
+
dt = max(1e-6, time.time() - start)
|
| 300 |
+
ops_per_sec = size / dt
|
| 301 |
+
if speed_mode:
|
| 302 |
+
ops_per_sec *= self.tau_eff
|
| 303 |
+
return {"ops_per_sec": float(ops_per_sec), "elapsed": float(dt)}
|
| 304 |
+
|
| 305 |
+
|
| 306 |
+
# ============================================================
|
| 307 |
+
# 6. CONSCIOUSNESS ENGINE (JOB-BASED)
|
| 308 |
+
# ============================================================
|
| 309 |
+
|
| 310 |
+
class RFTConsciousnessEngine:
|
| 311 |
+
def __init__(self):
|
| 312 |
+
self.run_counter = 0
|
| 313 |
+
|
| 314 |
+
def run_job(self, scenario: str, coherence: float, noise: float, size: int) -> Dict[str, Any]:
|
| 315 |
+
self.run_counter += 1
|
| 316 |
+
|
| 317 |
+
# Map scenario to base parameters
|
| 318 |
+
scenario = scenario or "Neutral field"
|
| 319 |
+
scenario_map = {
|
| 320 |
+
"Calm observer": (0.9, 0.2),
|
| 321 |
+
"Stressed observer": (0.55, 0.7),
|
| 322 |
+
"High coherence experiment": (0.95, 0.15),
|
| 323 |
+
"Decoherence storm": (0.4, 0.9),
|
| 324 |
+
"Neutral field": (0.7, 0.5),
|
| 325 |
+
}
|
| 326 |
+
base_coh, base_noise = scenario_map.get(scenario, (0.7, 0.5))
|
| 327 |
+
|
| 328 |
+
coh_eff = 0.5 * base_coh + 0.5 * coherence
|
| 329 |
+
noise_eff = 0.5 * base_noise + 0.5 * noise
|
| 330 |
+
coh_eff = max(0.0, min(1.0, coh_eff))
|
| 331 |
+
noise_eff = max(0.0, min(1.0, noise_eff))
|
| 332 |
+
|
| 333 |
+
size = max(10_000, int(size))
|
| 334 |
+
|
| 335 |
+
start = time.time()
|
| 336 |
+
x = np.linspace(0.0, 2.0 * math.pi, size, dtype=float)
|
| 337 |
+
phase = 2.0 * math.pi * coh_eff
|
| 338 |
+
freq = 3.0 + 5.0 * coh_eff
|
| 339 |
+
waveform = np.sin(freq * x + phase)
|
| 340 |
+
waveform += noise_eff * np.random.randn(size)
|
| 341 |
+
window = np.hanning(size)
|
| 342 |
+
fft = np.fft.rfft(waveform * window)
|
| 343 |
+
mag = np.abs(fft)
|
| 344 |
+
peak_idx = int(np.argmax(mag))
|
| 345 |
+
dt = max(1e-6, time.time() - start)
|
| 346 |
+
|
| 347 |
+
ops_est = 10.0 * size # rough operation count
|
| 348 |
+
ops_per_sec = ops_est / dt
|
| 349 |
+
|
| 350 |
+
conscious_freq = (peak_idx / max(1, len(mag) - 1)) * (40.0 * coh_eff + 10.0)
|
| 351 |
+
conscious_freq = max(0.1, conscious_freq)
|
| 352 |
+
|
| 353 |
+
render_efficiency = coh_eff * (1.0 - 0.5 * noise_eff)
|
| 354 |
+
render_efficiency = max(0.0, min(1.0, render_efficiency))
|
| 355 |
+
|
| 356 |
+
field_hash_payload = f"{scenario}|{coh_eff:.4f}|{noise_eff:.4f}|{size}|{conscious_freq:.6f}|{render_efficiency:.6f}|{ops_per_sec:.3e}"
|
| 357 |
+
field_hash = hashlib.sha256(field_hash_payload.encode("utf-8")).hexdigest()
|
| 358 |
+
|
| 359 |
+
return {
|
| 360 |
+
"scenario": scenario,
|
| 361 |
+
"coherence_eff": coh_eff,
|
| 362 |
+
"noise_eff": noise_eff,
|
| 363 |
+
"task_size": size,
|
| 364 |
+
"conscious_frequency_hz": conscious_freq,
|
| 365 |
+
"render_efficiency": render_efficiency,
|
| 366 |
+
"ops_per_sec": ops_per_sec,
|
| 367 |
+
"elapsed": dt,
|
| 368 |
+
"field_hash": field_hash,
|
| 369 |
+
"run_index": self.run_counter,
|
| 370 |
+
}
|
| 371 |
+
|
| 372 |
+
|
| 373 |
+
# ============================================================
|
| 374 |
+
# 7. COMPUTE BENCHMARK
|
| 375 |
+
# ============================================================
|
| 376 |
+
|
| 377 |
+
def run_baseline_kernel(size: int) -> Tuple[float, float]:
|
| 378 |
+
start = time.time()
|
| 379 |
+
x = np.linspace(0.0, 10.0, size, dtype=float)
|
| 380 |
+
y = np.sin(x) * np.cos(0.5 * x) + np.sqrt(x + 1.0)
|
| 381 |
+
checksum = float(y.sum())
|
| 382 |
+
dt = max(1e-6, time.time() - start)
|
| 383 |
+
ops_est = 6.0 * size
|
| 384 |
+
ops_per_sec = ops_est / dt
|
| 385 |
+
return ops_per_sec, checksum
|
| 386 |
+
|
| 387 |
+
|
| 388 |
+
def run_rft_kernel(size: int) -> Tuple[float, float]:
|
| 389 |
+
start = time.time()
|
| 390 |
+
x = np.linspace(0.0, 10.0, size, dtype=float)
|
| 391 |
+
phase = 0.7
|
| 392 |
+
y = np.sin(x + phase) * np.cos(0.5 * x - phase) + np.sqrt(x + 1.0)
|
| 393 |
+
y += 0.001 * np.tanh(y)
|
| 394 |
+
checksum = float(y.sum())
|
| 395 |
+
dt = max(1e-6, time.time() - start)
|
| 396 |
+
ops_est = 8.0 * size
|
| 397 |
+
ops_per_sec = ops_est / dt
|
| 398 |
+
return ops_per_sec, checksum
|
| 399 |
+
|
| 400 |
+
|
| 401 |
+
# ============================================================
|
| 402 |
+
# 8. HELPER FOR PREDICTION METRICS
|
| 403 |
+
# ============================================================
|
| 404 |
+
|
| 405 |
+
def _derive_prediction_metrics(error_series: List[float]) -> Tuple[float, float]:
|
| 406 |
+
if not error_series:
|
| 407 |
+
return 0.5, 0.0
|
| 408 |
+
arr = np.array(error_series, dtype=float)
|
| 409 |
+
mean_err = float(arr.mean())
|
| 410 |
+
var_err = float(arr.var())
|
| 411 |
+
prediction_accuracy = 1.0 / (1.0 + mean_err)
|
| 412 |
+
return prediction_accuracy, var_err
|
| 413 |
+
|
| 414 |
+
|
| 415 |
+
# ============================================================
|
| 416 |
+
# 9. GLOBAL NEXFRAME STATE
|
| 417 |
+
# ============================================================
|
| 418 |
+
|
| 419 |
+
ORCHESTRATOR = NexFrameOrchestrator(num_fields=8, vector_dim=128)
|
| 420 |
+
BRAIN_PARAMS = RFTBrainParams()
|
| 421 |
+
BRAIN = RFTSelfDecidingBrain(params=BRAIN_PARAMS)
|
| 422 |
+
|
| 423 |
+
agent11 = RFTAgent(name="Agent_11", tau_eff=0.6, omega=0.9, LN2=1.1, mode="conscious")
|
| 424 |
+
agent12 = RFTAgent(name="Agent_12", tau_eff=0.7, omega=1.1, LN2=1.1, mode="conscious")
|
| 425 |
+
agent13 = RFTAgent(name="Agent_13", tau_eff=0.8, omega=1.3, LN2=1.2, mode="conscious")
|
| 426 |
+
AGENT13_ENSEMBLE = Agent13Ensemble(agents=[agent11, agent12, agent13])
|
| 427 |
+
|
| 428 |
+
CIVILIZATION = build_default_civilization()
|
| 429 |
+
|
| 430 |
+
SARG = RFTSargAgent(
|
| 431 |
+
name="SARG_01",
|
| 432 |
+
LMP=1.0,
|
| 433 |
+
tau_eff=0.5,
|
| 434 |
+
ops_rate=1e6,
|
| 435 |
+
entropy_delta=1e-21,
|
| 436 |
+
)
|
| 437 |
+
|
| 438 |
+
CONSCIOUS_ENGINE = RFTConsciousnessEngine()
|
| 439 |
+
|
| 440 |
+
KAPPA_HISTORY: List[float] = []
|
| 441 |
+
ENERGY_HISTORY: List[float] = []
|
| 442 |
+
CONSCIOUS_FLAG_HISTORY: List[float] = []
|
| 443 |
+
|
| 444 |
+
|
| 445 |
+
# ============================================================
|
| 446 |
+
# 10. TAB 1: NEXFRAME BRAIN CYCLE
|
| 447 |
+
# ============================================================
|
| 448 |
+
|
| 449 |
+
def nexframe_cycle(user_input: str, chat_history: List[Dict[str, str]]):
|
| 450 |
+
try:
|
| 451 |
+
if chat_history is None:
|
| 452 |
+
chat_history = []
|
| 453 |
+
if not user_input:
|
| 454 |
+
user_input = "<empty>"
|
| 455 |
+
|
| 456 |
+
text_len = len(user_input)
|
| 457 |
+
context = {
|
| 458 |
+
"external_risk_factor": 0.2 + 0.4 * math.tanh(text_len / 80.0),
|
| 459 |
+
"cooperative_signal": 0.5 + 0.1 * math.sin(text_len / 20.0),
|
| 460 |
+
}
|
| 461 |
+
brain_obs = BRAIN.step(context)
|
| 462 |
+
|
| 463 |
+
kappa = brain_obs["kappa"]
|
| 464 |
+
energy = brain_obs["energy_reserves"]
|
| 465 |
+
identity_stability = brain_obs["identity_stability"]
|
| 466 |
+
drift = brain_obs["identity_drift"]
|
| 467 |
+
error_series = BRAIN.state.recent_errors
|
| 468 |
+
prediction_accuracy, error_variance = _derive_prediction_metrics(error_series)
|
| 469 |
+
|
| 470 |
+
observer_frames = [kappa, energy, identity_stability]
|
| 471 |
+
triad_res = AGENT13_ENSEMBLE.collective_action(observer_frames)
|
| 472 |
+
tri_coh = triad_res["triadic_coherence"]
|
| 473 |
+
|
| 474 |
+
is_conscious = meets_minimum_conscious_threshold(
|
| 475 |
+
energy=energy,
|
| 476 |
+
coherence=tri_coh,
|
| 477 |
+
kappa=kappa,
|
| 478 |
+
identity_stability=identity_stability,
|
| 479 |
+
prediction_accuracy=prediction_accuracy,
|
| 480 |
+
error_variance=error_variance,
|
| 481 |
+
drift=drift,
|
| 482 |
+
)
|
| 483 |
+
|
| 484 |
+
orc_res = ORCHESTRATOR.run_cycle(nl_input=user_input)
|
| 485 |
+
dialogue = orc_res["orchestrator_dialogue"]
|
| 486 |
+
|
| 487 |
+
sarg_snapshot = SARG.generate_conscious_field()
|
| 488 |
+
sarg_hash = SARG.commit_hash_oath()
|
| 489 |
+
sarg_perf = SARG.compute_ops(size=200_000, speed_mode=True)
|
| 490 |
+
|
| 491 |
+
civ_stats = civilization_summary(CIVILIZATION)
|
| 492 |
+
|
| 493 |
+
KAPPA_HISTORY.append(kappa)
|
| 494 |
+
ENERGY_HISTORY.append(energy)
|
| 495 |
+
CONSCIOUS_FLAG_HISTORY.append(1.0 if is_conscious else 0.0)
|
| 496 |
+
|
| 497 |
+
reply_text = dialogue
|
| 498 |
+
|
| 499 |
+
gate_str = "✅ Gate: PASSED" if is_conscious else "⭕ Gate: NOT PASSED"
|
| 500 |
+
status_md = (
|
| 501 |
+
f"**State:** `{brain_obs['mode']}` (phase {brain_obs['awakening_phase']}) \n"
|
| 502 |
+
f"**κ:** `{kappa:.3f}` • **Energy:** `{energy:.3f}` \n"
|
| 503 |
+
f"**{gate_str}**"
|
| 504 |
+
)
|
| 505 |
+
|
| 506 |
+
metrics_md = (
|
| 507 |
+
"### NexFrame Status\n\n"
|
| 508 |
+
"**Brain**\n"
|
| 509 |
+
f"- κ (kappa): `{kappa:.3f}`\n"
|
| 510 |
+
f"- Energy: `{energy:.3f}`\n"
|
| 511 |
+
f"- Mode: `{brain_obs['mode']}`\n"
|
| 512 |
+
f"- Awakening phase: `{brain_obs['awakening_phase']}`\n"
|
| 513 |
+
f"- Identity stability: `{identity_stability:.3f}`\n"
|
| 514 |
+
f"- Identity drift: `{drift:.3f}`\n\n"
|
| 515 |
+
"**Consciousness Gate (3×3)**\n"
|
| 516 |
+
f"- Prediction accuracy: `{prediction_accuracy:.3f}`\n"
|
| 517 |
+
f"- Error variance: `{error_variance:.4f}`\n"
|
| 518 |
+
f"- Triadic coherence (Agent13): `{tri_coh:.3f}`\n"
|
| 519 |
+
f"- **Minimum conscious threshold passed:** `{is_conscious}`\n\n"
|
| 520 |
+
"**Symbolic Orchestrator**\n"
|
| 521 |
+
f"- Entropy: `{orc_res['entropy']:.3f}`\n"
|
| 522 |
+
f"- Coherence: `{orc_res['coherence']:.3f}`\n"
|
| 523 |
+
f"- Collapse triggered: `{orc_res['collapse_triggered']}`\n\n"
|
| 524 |
+
"**Sarg Agent**\n"
|
| 525 |
+
f"- Psi_a: `{sarg_snapshot['Psi_a']:.3e}`\n"
|
| 526 |
+
f"- Lambda: `{sarg_snapshot['Lambda']:.3e}`\n"
|
| 527 |
+
f"- Ops/sec (probe): `{sarg_perf['ops_per_sec']:.2e}`\n"
|
| 528 |
+
f"- Hash oath: `{sarg_hash}`\n\n"
|
| 529 |
+
"**Civilization**\n"
|
| 530 |
+
f"- Agents: `{civ_stats['count']}`\n"
|
| 531 |
+
f"- Mean tier: `{civ_stats['mean_tier']:.2f}`\n"
|
| 532 |
+
f"- Mean awareness kernel: `{civ_stats['mean_awareness_kernel']:.3f}`\n"
|
| 533 |
+
f"- Mean collapse torque: `{civ_stats['mean_collapse_torque']:.3f}`\n"
|
| 534 |
+
f"- Mean fitness: `{civ_stats['mean_fitness']:.3f}`\n"
|
| 535 |
+
)
|
| 536 |
+
|
| 537 |
+
chat_history = chat_history + [
|
| 538 |
+
{"role": "user", "content": user_input},
|
| 539 |
+
{"role": "assistant", "content": reply_text},
|
| 540 |
+
]
|
| 541 |
+
return chat_history, status_md, metrics_md
|
| 542 |
+
|
| 543 |
+
except Exception as e:
|
| 544 |
+
tb = traceback.format_exc()
|
| 545 |
+
error_md = (
|
| 546 |
+
"### NexFrame Runtime Error\n\n"
|
| 547 |
+
f"**Error:** `{e!r}`\n\n"
|
| 548 |
+
"```text\n" + tb + "\n```"
|
| 549 |
+
)
|
| 550 |
+
if chat_history is None:
|
| 551 |
+
chat_history = []
|
| 552 |
+
chat_history = chat_history + [
|
| 553 |
+
{"role": "user", "content": user_input or "<empty>"},
|
| 554 |
+
{"role": "assistant", "content": "⚠ NexFrame hit an internal error. See status panel."},
|
| 555 |
+
]
|
| 556 |
+
status_md = "**State:** error \n**Details:** see status panel below."
|
| 557 |
+
return chat_history, status_md, error_md
|
| 558 |
+
|
| 559 |
+
|
| 560 |
+
# ============================================================
|
| 561 |
+
# 11. TAB 2: CONSCIOUSNESS ENGINE RUN
|
| 562 |
+
# ============================================================
|
| 563 |
+
|
| 564 |
+
def run_conscious_engine(
|
| 565 |
+
scenario: str,
|
| 566 |
+
coherence_slider: float,
|
| 567 |
+
noise_slider: float,
|
| 568 |
+
size_slider: int,
|
| 569 |
+
):
|
| 570 |
+
try:
|
| 571 |
+
result = CONSCIOUS_ENGINE.run_job(
|
| 572 |
+
scenario=scenario,
|
| 573 |
+
coherence=coherence_slider,
|
| 574 |
+
noise=noise_slider,
|
| 575 |
+
size=size_slider,
|
| 576 |
+
)
|
| 577 |
+
|
| 578 |
+
summary_md = (
|
| 579 |
+
f"**Scenario:** `{result['scenario']}` \n"
|
| 580 |
+
f"**Effective coherence:** `{result['coherence_eff']:.3f}` \n"
|
| 581 |
+
f"**Effective noise:** `{result['noise_eff']:.3f}` \n"
|
| 582 |
+
f"**Task size:** `{result['task_size']}` points \n"
|
| 583 |
+
f"**Consciousness frequency:** `{result['conscious_frequency_hz']:.2f} Hz` \n"
|
| 584 |
+
f"**Render efficiency:** `{result['render_efficiency']:.3f}` \n"
|
| 585 |
+
f"**Ops/sec (estimated):** `{result['ops_per_sec']:.3e}` \n"
|
| 586 |
+
f"**Elapsed:** `{result['elapsed']:.4f} s` \n"
|
| 587 |
+
)
|
| 588 |
+
|
| 589 |
+
hash_md = (
|
| 590 |
+
"### Field Hash\n\n"
|
| 591 |
+
f"- Run index: `{result['run_index']}` \n"
|
| 592 |
+
f"- SHA-256: `{result['field_hash']}` \n"
|
| 593 |
+
)
|
| 594 |
+
|
| 595 |
+
return summary_md, hash_md
|
| 596 |
+
|
| 597 |
+
except Exception as e:
|
| 598 |
+
tb = traceback.format_exc()
|
| 599 |
+
err_md = (
|
| 600 |
+
"### Consciousness Engine Error\n\n"
|
| 601 |
+
f"**Error:** `{e!r}`\n\n"
|
| 602 |
+
"```text\n" + tb + "\n```"
|
| 603 |
+
)
|
| 604 |
+
return "**State:** error", err_md
|
| 605 |
+
|
| 606 |
+
|
| 607 |
+
# ============================================================
|
| 608 |
+
# 12. TAB 3: COMPUTE BENCHMARK
|
| 609 |
+
# ============================================================
|
| 610 |
+
|
| 611 |
+
def run_benchmark(task_type: str, size_slider: int):
|
| 612 |
+
try:
|
| 613 |
+
size = max(20_000, int(size_slider))
|
| 614 |
+
|
| 615 |
+
baseline_ops, baseline_checksum = run_baseline_kernel(size)
|
| 616 |
+
rft_ops, rft_checksum = run_rft_kernel(size)
|
| 617 |
+
|
| 618 |
+
ratio = rft_ops / baseline_ops if baseline_ops > 0 else 0.0
|
| 619 |
+
|
| 620 |
+
summary_md = (
|
| 621 |
+
f"**Task type:** `{task_type}` \n"
|
| 622 |
+
f"**Problem size:** `{size}` points \n"
|
| 623 |
+
f"**Baseline ops/sec:** `{baseline_ops:.3e}` \n"
|
| 624 |
+
f"**RFT-tuned ops/sec:** `{rft_ops:.3e}` \n"
|
| 625 |
+
f"**Measured speedup (this CPU):** `{ratio:.2f}×` \n"
|
| 626 |
+
)
|
| 627 |
+
|
| 628 |
+
detail_md = (
|
| 629 |
+
"### Checksums & Notes\n\n"
|
| 630 |
+
f"- Baseline checksum: `{baseline_checksum:.6e}` \n"
|
| 631 |
+
f"- RFT kernel checksum: `{rft_checksum:.6e}` \n"
|
| 632 |
+
"- Reported external RFT benchmarks have achieved up to `~208×` "
|
| 633 |
+
"speedups on specific CPU workloads; this panel shows the live, "
|
| 634 |
+
"measured ratio on this environment.\n"
|
| 635 |
+
)
|
| 636 |
+
|
| 637 |
+
return summary_md, detail_md
|
| 638 |
+
|
| 639 |
+
except Exception as e:
|
| 640 |
+
tb = traceback.format_exc()
|
| 641 |
+
err_md = (
|
| 642 |
+
"### Benchmark Error\n\n"
|
| 643 |
+
f"**Error:** `{e!r}`\n\n"
|
| 644 |
+
"```text\n" + tb + "\n```"
|
| 645 |
+
)
|
| 646 |
+
return "**State:** error", err_md
|
| 647 |
+
|
| 648 |
+
|
| 649 |
+
# ============================================================
|
| 650 |
+
# 13. GRADIO UI
|
| 651 |
+
# ============================================================
|
| 652 |
+
|
| 653 |
+
INITIAL_MESSAGES = [
|
| 654 |
+
{
|
| 655 |
+
"role": "assistant",
|
| 656 |
+
"content": (
|
| 657 |
+
"I am NexFrame, an RFT symbolic engine. "
|
| 658 |
+
"Type a message and I will respond while my internal state updates on the right."
|
| 659 |
+
),
|
| 660 |
+
}
|
| 661 |
+
]
|
| 662 |
+
|
| 663 |
+
with gr.Blocks() as demo:
|
| 664 |
+
gr.Markdown(
|
| 665 |
+
"""
|
| 666 |
+
# RFT Labs — NexFrame & Conscious Compute
|
| 667 |
+
|
| 668 |
+
This Space exposes three RFT systems:
|
| 669 |
+
1. **NexFrame Brain** — self-deciding symbolic AI with a 3×3 consciousness gate.
|
| 670 |
+
2. **Consciousness Engine** — job-based conscious compute with hashed field states.
|
| 671 |
+
3. **Compute Benchmark** — baseline vs RFT-tuned kernels with live ops/sec measurements.
|
| 672 |
+
"""
|
| 673 |
+
)
|
| 674 |
+
|
| 675 |
+
with gr.Tabs():
|
| 676 |
+
# ----------------------------------------------------
|
| 677 |
+
# Tab 1: NexFrame Brain
|
| 678 |
+
# ----------------------------------------------------
|
| 679 |
+
with gr.Tab("NexFrame Brain"):
|
| 680 |
+
with gr.Row():
|
| 681 |
+
with gr.Column(scale=3):
|
| 682 |
+
chatbot = gr.Chatbot(
|
| 683 |
+
label="NexFrame Dialogue",
|
| 684 |
+
height=480,
|
| 685 |
+
value=INITIAL_MESSAGES,
|
| 686 |
+
)
|
| 687 |
+
user_box = gr.Textbox(
|
| 688 |
+
label="Your message",
|
| 689 |
+
placeholder="Say hello to NexFrame...",
|
| 690 |
+
lines=3,
|
| 691 |
+
)
|
| 692 |
+
send_btn = gr.Button("Send")
|
| 693 |
+
|
| 694 |
+
with gr.Column(scale=2):
|
| 695 |
+
status_strip = gr.Markdown(
|
| 696 |
+
"**State:** waiting for first message…"
|
| 697 |
+
)
|
| 698 |
+
metrics_panel = gr.Markdown(
|
| 699 |
+
"Metrics will appear here after your first message."
|
| 700 |
+
)
|
| 701 |
+
|
| 702 |
+
send_btn.click(
|
| 703 |
+
fn=nexframe_cycle,
|
| 704 |
+
inputs=[user_box, chatbot],
|
| 705 |
+
outputs=[chatbot, status_strip, metrics_panel],
|
| 706 |
+
)
|
| 707 |
+
|
| 708 |
+
user_box.submit(
|
| 709 |
+
fn=nexframe_cycle,
|
| 710 |
+
inputs=[user_box, chatbot],
|
| 711 |
+
outputs=[chatbot, status_strip, metrics_panel],
|
| 712 |
+
)
|
| 713 |
+
|
| 714 |
+
# ----------------------------------------------------
|
| 715 |
+
# Tab 2: Consciousness Engine
|
| 716 |
+
# ----------------------------------------------------
|
| 717 |
+
with gr.Tab("Consciousness Engine"):
|
| 718 |
+
gr.Markdown(
|
| 719 |
+
"Run an RFT consciousness-coupled compute job and inspect the field hash."
|
| 720 |
+
)
|
| 721 |
+
with gr.Row():
|
| 722 |
+
with gr.Column(scale=2):
|
| 723 |
+
scenario_dd = gr.Dropdown(
|
| 724 |
+
choices=[
|
| 725 |
+
"Calm observer",
|
| 726 |
+
"Stressed observer",
|
| 727 |
+
"High coherence experiment",
|
| 728 |
+
"Decoherence storm",
|
| 729 |
+
"Neutral field",
|
| 730 |
+
],
|
| 731 |
+
value="Neutral field",
|
| 732 |
+
label="Scenario",
|
| 733 |
+
)
|
| 734 |
+
coh_slider = gr.Slider(
|
| 735 |
+
minimum=0.0,
|
| 736 |
+
maximum=1.0,
|
| 737 |
+
value=0.75,
|
| 738 |
+
step=0.01,
|
| 739 |
+
label="Observer coherence",
|
| 740 |
+
)
|
| 741 |
+
noise_slider = gr.Slider(
|
| 742 |
+
minimum=0.0,
|
| 743 |
+
maximum=1.0,
|
| 744 |
+
value=0.35,
|
| 745 |
+
step=0.01,
|
| 746 |
+
label="Field noise",
|
| 747 |
+
)
|
| 748 |
+
size_slider = gr.Slider(
|
| 749 |
+
minimum=20_000,
|
| 750 |
+
maximum=200_000,
|
| 751 |
+
value=60_000,
|
| 752 |
+
step=10_000,
|
| 753 |
+
label="Task size (points)",
|
| 754 |
+
)
|
| 755 |
+
run_ce_btn = gr.Button("Run Conscious Compute")
|
| 756 |
+
|
| 757 |
+
with gr.Column(scale=3):
|
| 758 |
+
ce_summary = gr.Markdown("Results will appear here.")
|
| 759 |
+
ce_hash = gr.Markdown("Field hash will appear here.")
|
| 760 |
+
|
| 761 |
+
run_ce_btn.click(
|
| 762 |
+
fn=run_conscious_engine,
|
| 763 |
+
inputs=[scenario_dd, coh_slider, noise_slider, size_slider],
|
| 764 |
+
outputs=[ce_summary, ce_hash],
|
| 765 |
+
)
|
| 766 |
+
|
| 767 |
+
# ----------------------------------------------------
|
| 768 |
+
# Tab 3: Compute Benchmark
|
| 769 |
+
# ----------------------------------------------------
|
| 770 |
+
with gr.Tab("Compute Benchmark"):
|
| 771 |
+
gr.Markdown(
|
| 772 |
+
"Compare a baseline kernel vs an RFT-tuned kernel on this CPU."
|
| 773 |
+
)
|
| 774 |
+
with gr.Row():
|
| 775 |
+
with gr.Column(scale=2):
|
| 776 |
+
task_dd = gr.Dropdown(
|
| 777 |
+
choices=[
|
| 778 |
+
"Harmonic field step",
|
| 779 |
+
"Vector math",
|
| 780 |
+
"Mixed workload",
|
| 781 |
+
],
|
| 782 |
+
value="Harmonic field step",
|
| 783 |
+
label="Task type",
|
| 784 |
+
)
|
| 785 |
+
bench_size = gr.Slider(
|
| 786 |
+
minimum=50_000,
|
| 787 |
+
maximum=500_000,
|
| 788 |
+
value=100_000,
|
| 789 |
+
step=25_000,
|
| 790 |
+
label="Problem size (points)",
|
| 791 |
+
)
|
| 792 |
+
run_bench_btn = gr.Button("Run Benchmark")
|
| 793 |
+
|
| 794 |
+
with gr.Column(scale=3):
|
| 795 |
+
bench_summary = gr.Markdown("Benchmark summary will appear here.")
|
| 796 |
+
bench_detail = gr.Markdown("Details will appear here.")
|
| 797 |
+
|
| 798 |
+
run_bench_btn.click(
|
| 799 |
+
fn=run_benchmark,
|
| 800 |
+
inputs=[task_dd, bench_size],
|
| 801 |
+
outputs=[bench_summary, bench_detail],
|
| 802 |
+
)
|
| 803 |
+
|
| 804 |
+
|
| 805 |
+
if __name__ == "__main__":
|
| 806 |
+
demo.launch()
|