Spaces:
Sleeping
Sleeping
Clémentine
commited on
Commit
·
741edbf
1
Parent(s):
5d94f6d
updated app
Browse files- app.py +48 -51
- requirements.txt +1 -1
app.py
CHANGED
|
@@ -15,34 +15,29 @@ from huggingface_hub import HfApi
|
|
| 15 |
from scorer import question_scorer
|
| 16 |
from content import format_warning, format_log, TITLE, INTRODUCTION_TEXT, CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT
|
| 17 |
|
| 18 |
-
BALM_TOKEN = os.environ.get("
|
| 19 |
|
| 20 |
OWNER="gaia-benchmark"
|
| 21 |
DATA_DATASET = f"{OWNER}/GAIA"
|
| 22 |
-
|
|
|
|
| 23 |
RESULTS_DATASET = f"{OWNER}/results"
|
| 24 |
LEADERBOARD_PATH = f"{OWNER}/leaderboard"
|
| 25 |
-
|
| 26 |
-
SPLIT="validation" #Change to test once we are ready to go
|
| 27 |
api = HfApi()
|
| 28 |
|
|
|
|
|
|
|
| 29 |
os.makedirs("scored", exist_ok=True)
|
| 30 |
|
| 31 |
# Display the results
|
| 32 |
-
eval_results =
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
eval_dataframe_1 = pd.DataFrame(eval_results[1].remove_columns("mail"))
|
| 38 |
-
eval_dataframe_2 = pd.DataFrame(eval_results[2].remove_columns("mail"))
|
| 39 |
-
eval_dataframe_3 = pd.DataFrame(eval_results[3].remove_columns("mail"))
|
| 40 |
|
| 41 |
# Gold answers
|
| 42 |
gold_results = {}
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
gold_results[level] = {row["task_id"]: row["ground_truth"] for row in level_dataset}
|
| 46 |
|
| 47 |
|
| 48 |
def restart_space():
|
|
@@ -53,14 +48,12 @@ COLS = ["Model", "Score ⬆️", "Organisation"]
|
|
| 53 |
TYPES = ["str", "number", "str",]
|
| 54 |
|
| 55 |
def add_new_eval(
|
| 56 |
-
|
| 57 |
model: str,
|
| 58 |
path_to_file,
|
| 59 |
organisation: str,
|
| 60 |
mail: str,
|
| 61 |
):
|
| 62 |
-
level = int(level_of_dev.split(" ")[-1])
|
| 63 |
-
|
| 64 |
# Very basic email parsing
|
| 65 |
_, parsed_mail = parseaddr(mail)
|
| 66 |
if not "@" in parsed_mail:
|
|
@@ -69,21 +62,25 @@ def add_new_eval(
|
|
| 69 |
print("Adding new eval")
|
| 70 |
|
| 71 |
# Check if the combination model/org already exists and prints a warning message if yes
|
| 72 |
-
if model.lower() in set(eval_results[
|
| 73 |
return format_warning("This model has been already submitted.")
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
# Save submitted file
|
| 76 |
api.upload_file(
|
| 77 |
repo_id=SUBMISSION_DATASET,
|
| 78 |
path_or_fileobj=path_to_file.name,
|
| 79 |
-
path_in_repo=f"{organisation}/{model}/
|
| 80 |
repo_type="dataset",
|
| 81 |
token=BALM_TOKEN
|
| 82 |
)
|
| 83 |
|
| 84 |
# Compute score
|
| 85 |
file_path = path_to_file.name
|
| 86 |
-
|
|
|
|
| 87 |
with open(f"scored/{organisation}_{model}.jsonl", "w") as scored_file:
|
| 88 |
with open(file_path, 'r') as f:
|
| 89 |
for line in f:
|
|
@@ -93,24 +90,29 @@ def add_new_eval(
|
|
| 93 |
raise Exception("No model_answer key in the file provided")
|
| 94 |
answer = task["model_answer"]
|
| 95 |
task_id = task["task_id"]
|
| 96 |
-
|
| 97 |
-
|
|
|
|
| 98 |
|
| 99 |
scored_file.write(
|
| 100 |
json.dumps({
|
| 101 |
"id": task_id,
|
| 102 |
"model_answer": answer,
|
| 103 |
-
"score": score
|
|
|
|
| 104 |
}) + "\n"
|
| 105 |
)
|
| 106 |
|
| 107 |
-
|
|
|
|
|
|
|
|
|
|
| 108 |
|
| 109 |
# Save scored file
|
| 110 |
api.upload_file(
|
| 111 |
repo_id=SUBMISSION_DATASET,
|
| 112 |
path_or_fileobj=f"scored/{organisation}_{model}.jsonl",
|
| 113 |
-
path_in_repo=f"{organisation}/{model}/
|
| 114 |
repo_type="dataset",
|
| 115 |
token=BALM_TOKEN
|
| 116 |
)
|
|
@@ -118,25 +120,25 @@ def add_new_eval(
|
|
| 118 |
# Actual submission
|
| 119 |
eval_entry = {
|
| 120 |
"model": model,
|
| 121 |
-
"score": total_score,
|
| 122 |
"organisation": organisation,
|
| 123 |
"mail": mail,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
}
|
| 125 |
-
eval_results[
|
| 126 |
-
|
| 127 |
-
eval_results
|
| 128 |
|
| 129 |
return format_log(f"Model {model} submitted by {organisation} successfully. \nPlease refresh the leaderboard, and wait for up to an hour to see the score displayed")
|
| 130 |
|
| 131 |
|
| 132 |
def refresh():
|
| 133 |
-
eval_results =
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
eval_dataframe_2 = pd.DataFrame(eval_results[2].remove_columns("mail"))
|
| 138 |
-
eval_dataframe_3 = pd.DataFrame(eval_results[3].remove_columns("mail"))
|
| 139 |
-
return eval_dataframe_1, eval_dataframe_2, eval_dataframe_3
|
| 140 |
|
| 141 |
def upload_file(files):
|
| 142 |
file_paths = [file.name for file in files]
|
|
@@ -156,17 +158,13 @@ with demo:
|
|
| 156 |
elem_id="citation-button",
|
| 157 |
).style(show_copy_button=True)
|
| 158 |
|
| 159 |
-
with gr.Tab("Results:
|
| 160 |
-
|
| 161 |
-
value=
|
| 162 |
-
)
|
| 163 |
-
with gr.Tab("Results: Level 2"):
|
| 164 |
-
leaderboard_table_2 = gr.components.Dataframe(
|
| 165 |
-
value=eval_dataframe_2, headers=COLS, datatype=TYPES, interactive=False,
|
| 166 |
)
|
| 167 |
-
with gr.Tab("Results:
|
| 168 |
-
|
| 169 |
-
value=
|
| 170 |
)
|
| 171 |
|
| 172 |
refresh_button = gr.Button("Refresh")
|
|
@@ -174,15 +172,14 @@ with demo:
|
|
| 174 |
refresh,
|
| 175 |
inputs=[],
|
| 176 |
outputs=[
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
leaderboard_table_3,
|
| 180 |
],
|
| 181 |
)
|
| 182 |
with gr.Accordion("Submit a new model for evaluation"):
|
| 183 |
with gr.Row():
|
| 184 |
with gr.Column():
|
| 185 |
-
level_of_test = gr.Radio(["
|
| 186 |
model_name_textbox = gr.Textbox(label="Model name")
|
| 187 |
file_output = gr.File()
|
| 188 |
with gr.Column():
|
|
|
|
| 15 |
from scorer import question_scorer
|
| 16 |
from content import format_warning, format_log, TITLE, INTRODUCTION_TEXT, CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT
|
| 17 |
|
| 18 |
+
BALM_TOKEN = os.environ.get("WTOKEN", None)
|
| 19 |
|
| 20 |
OWNER="gaia-benchmark"
|
| 21 |
DATA_DATASET = f"{OWNER}/GAIA"
|
| 22 |
+
INTERNAL_DATA_DATASET = f"{OWNER}/GAIA_internal"
|
| 23 |
+
SUBMISSION_DATASET = f"{OWNER}/submissions_internal"
|
| 24 |
RESULTS_DATASET = f"{OWNER}/results"
|
| 25 |
LEADERBOARD_PATH = f"{OWNER}/leaderboard"
|
|
|
|
|
|
|
| 26 |
api = HfApi()
|
| 27 |
|
| 28 |
+
YEAR_VERSION = "2023"
|
| 29 |
+
|
| 30 |
os.makedirs("scored", exist_ok=True)
|
| 31 |
|
| 32 |
# Display the results
|
| 33 |
+
eval_results = load_dataset(RESULTS_DATASET, YEAR_VERSION, use_auth_token=BALM_TOKEN)
|
| 34 |
+
eval_dataframe_val = pd.DataFrame(eval_results["validation"].remove_columns("mail"))
|
| 35 |
+
eval_dataframe_test = pd.DataFrame(eval_results["test"].remove_columns("mail"))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
# Gold answers
|
| 38 |
gold_results = {}
|
| 39 |
+
gold_dataset = load_dataset(INTERNAL_DATA_DATASET, f"{YEAR_VERSION}_all", use_auth_token=BALM_TOKEN)
|
| 40 |
+
gold_results = {split: {row["task_id"]: row for row in gold_dataset[split]} for split in ["test", "validation"]}
|
|
|
|
| 41 |
|
| 42 |
|
| 43 |
def restart_space():
|
|
|
|
| 48 |
TYPES = ["str", "number", "str",]
|
| 49 |
|
| 50 |
def add_new_eval(
|
| 51 |
+
val_or_test: str,
|
| 52 |
model: str,
|
| 53 |
path_to_file,
|
| 54 |
organisation: str,
|
| 55 |
mail: str,
|
| 56 |
):
|
|
|
|
|
|
|
| 57 |
# Very basic email parsing
|
| 58 |
_, parsed_mail = parseaddr(mail)
|
| 59 |
if not "@" in parsed_mail:
|
|
|
|
| 62 |
print("Adding new eval")
|
| 63 |
|
| 64 |
# Check if the combination model/org already exists and prints a warning message if yes
|
| 65 |
+
if model.lower() in set(eval_results[val_or_test]["model"]) and organisation.lower() in set(eval_results[val_or_test]["organisation"]):
|
| 66 |
return format_warning("This model has been already submitted.")
|
| 67 |
+
|
| 68 |
+
if path_to_file is None:
|
| 69 |
+
return format_warning("Please attach a file.")
|
| 70 |
|
| 71 |
# Save submitted file
|
| 72 |
api.upload_file(
|
| 73 |
repo_id=SUBMISSION_DATASET,
|
| 74 |
path_or_fileobj=path_to_file.name,
|
| 75 |
+
path_in_repo=f"{organisation}/{model}/{YEAR_VERSION}_{val_or_test}_raw_{datetime.datetime.today()}.jsonl",
|
| 76 |
repo_type="dataset",
|
| 77 |
token=BALM_TOKEN
|
| 78 |
)
|
| 79 |
|
| 80 |
# Compute score
|
| 81 |
file_path = path_to_file.name
|
| 82 |
+
scores = {"all": 0, 1: 0, 2: 0, 3: 0}
|
| 83 |
+
num_questions = {"all": 0, 1: 0, 2: 0, 3: 0}
|
| 84 |
with open(f"scored/{organisation}_{model}.jsonl", "w") as scored_file:
|
| 85 |
with open(file_path, 'r') as f:
|
| 86 |
for line in f:
|
|
|
|
| 90 |
raise Exception("No model_answer key in the file provided")
|
| 91 |
answer = task["model_answer"]
|
| 92 |
task_id = task["task_id"]
|
| 93 |
+
level = int(gold_results[val_or_test][task_id]["Level"])
|
| 94 |
+
|
| 95 |
+
score = question_scorer(task['model_answer'], gold_results[val_or_test][task_id]["Final answer"])
|
| 96 |
|
| 97 |
scored_file.write(
|
| 98 |
json.dumps({
|
| 99 |
"id": task_id,
|
| 100 |
"model_answer": answer,
|
| 101 |
+
"score": score,
|
| 102 |
+
"level": level
|
| 103 |
}) + "\n"
|
| 104 |
)
|
| 105 |
|
| 106 |
+
scores["all"] += score
|
| 107 |
+
scores[level] += score
|
| 108 |
+
num_questions["all"] += 1
|
| 109 |
+
num_questions[level] += 1
|
| 110 |
|
| 111 |
# Save scored file
|
| 112 |
api.upload_file(
|
| 113 |
repo_id=SUBMISSION_DATASET,
|
| 114 |
path_or_fileobj=f"scored/{organisation}_{model}.jsonl",
|
| 115 |
+
path_in_repo=f"{organisation}/{model}/{YEAR_VERSION}_{val_or_test}_scored_{datetime.datetime.today()}.jsonl",
|
| 116 |
repo_type="dataset",
|
| 117 |
token=BALM_TOKEN
|
| 118 |
)
|
|
|
|
| 120 |
# Actual submission
|
| 121 |
eval_entry = {
|
| 122 |
"model": model,
|
|
|
|
| 123 |
"organisation": organisation,
|
| 124 |
"mail": mail,
|
| 125 |
+
"score": scores["all"]/num_questions["all"],
|
| 126 |
+
"score_level1": scores[1]/num_questions[1],
|
| 127 |
+
"score_level2": scores[2]/num_questions[2],
|
| 128 |
+
"score_level3": scores[3]/num_questions[3],
|
| 129 |
}
|
| 130 |
+
eval_results[val_or_test] = eval_results[val_or_test].add_item(eval_entry)
|
| 131 |
+
print(eval_results)
|
| 132 |
+
eval_results.push_to_hub(RESULTS_DATASET, config_name = YEAR_VERSION, token=BALM_TOKEN)
|
| 133 |
|
| 134 |
return format_log(f"Model {model} submitted by {organisation} successfully. \nPlease refresh the leaderboard, and wait for up to an hour to see the score displayed")
|
| 135 |
|
| 136 |
|
| 137 |
def refresh():
|
| 138 |
+
eval_results = load_dataset(RESULTS_DATASET, YEAR_VERSION, use_auth_token=BALM_TOKEN, download_mode="force_redownload")
|
| 139 |
+
eval_dataframe_val = pd.DataFrame(eval_results["validation"].remove_columns("mail"))
|
| 140 |
+
eval_dataframe_test = pd.DataFrame(eval_results["test"].remove_columns("mail"))
|
| 141 |
+
return eval_dataframe_val, eval_dataframe_test
|
|
|
|
|
|
|
|
|
|
| 142 |
|
| 143 |
def upload_file(files):
|
| 144 |
file_paths = [file.name for file in files]
|
|
|
|
| 158 |
elem_id="citation-button",
|
| 159 |
).style(show_copy_button=True)
|
| 160 |
|
| 161 |
+
with gr.Tab("Results: Validation"):
|
| 162 |
+
leaderboard_table_val = gr.components.Dataframe(
|
| 163 |
+
value=eval_dataframe_val, headers=COLS, datatype=TYPES, interactive=False,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 164 |
)
|
| 165 |
+
with gr.Tab("Results: Test"):
|
| 166 |
+
leaderboard_table_test = gr.components.Dataframe(
|
| 167 |
+
value=eval_dataframe_test, headers=COLS, datatype=TYPES, interactive=False,
|
| 168 |
)
|
| 169 |
|
| 170 |
refresh_button = gr.Button("Refresh")
|
|
|
|
| 172 |
refresh,
|
| 173 |
inputs=[],
|
| 174 |
outputs=[
|
| 175 |
+
leaderboard_table_val,
|
| 176 |
+
leaderboard_table_test,
|
|
|
|
| 177 |
],
|
| 178 |
)
|
| 179 |
with gr.Accordion("Submit a new model for evaluation"):
|
| 180 |
with gr.Row():
|
| 181 |
with gr.Column():
|
| 182 |
+
level_of_test = gr.Radio(["validation", "test"], value="validation", label="Split")
|
| 183 |
model_name_textbox = gr.Textbox(label="Model name")
|
| 184 |
file_output = gr.File()
|
| 185 |
with gr.Column():
|
requirements.txt
CHANGED
|
@@ -18,7 +18,7 @@ filelock==3.11.0
|
|
| 18 |
fonttools==4.39.3
|
| 19 |
frozenlist==1.3.3
|
| 20 |
fsspec==2023.4.0
|
| 21 |
-
datasets
|
| 22 |
gradio==3.27.0
|
| 23 |
gradio_client==0.1.3
|
| 24 |
h11==0.14.0
|
|
|
|
| 18 |
fonttools==4.39.3
|
| 19 |
frozenlist==1.3.3
|
| 20 |
fsspec==2023.4.0
|
| 21 |
+
datasets==2.14.5
|
| 22 |
gradio==3.27.0
|
| 23 |
gradio_client==0.1.3
|
| 24 |
h11==0.14.0
|