Spaces:
Sleeping
Sleeping
Create agent.py
Browse files
agent.py
ADDED
|
@@ -0,0 +1,290 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""LangGraph Agent - Complete bypass of problematic vector store"""
|
| 2 |
+
import os
|
| 3 |
+
import json
|
| 4 |
+
from dotenv import load_dotenv
|
| 5 |
+
from langgraph.graph import START, StateGraph, MessagesState
|
| 6 |
+
from langgraph.prebuilt import tools_condition
|
| 7 |
+
from langgraph.prebuilt import ToolNode
|
| 8 |
+
from langchain_groq import ChatGroq
|
| 9 |
+
from langchain_community.tools.tavily_search import TavilySearchResults
|
| 10 |
+
from langchain_community.document_loaders import WikipediaLoader
|
| 11 |
+
from langchain_community.document_loaders import ArxivLoader
|
| 12 |
+
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
|
| 13 |
+
from langchain_core.tools import tool
|
| 14 |
+
from supabase.client import Client, create_client
|
| 15 |
+
|
| 16 |
+
load_dotenv()
|
| 17 |
+
|
| 18 |
+
@tool
|
| 19 |
+
def multiply(a: int, b: int) -> int:
|
| 20 |
+
"""Multiply two numbers."""
|
| 21 |
+
return a * b
|
| 22 |
+
|
| 23 |
+
@tool
|
| 24 |
+
def add(a: int, b: int) -> int:
|
| 25 |
+
"""Add two numbers."""
|
| 26 |
+
return a + b
|
| 27 |
+
|
| 28 |
+
@tool
|
| 29 |
+
def subtract(a: int, b: int) -> int:
|
| 30 |
+
"""Subtract two numbers."""
|
| 31 |
+
return a - b
|
| 32 |
+
|
| 33 |
+
@tool
|
| 34 |
+
def divide(a: int, b: int) -> int:
|
| 35 |
+
"""Divide two numbers."""
|
| 36 |
+
if b == 0:
|
| 37 |
+
raise ValueError("Cannot divide by zero.")
|
| 38 |
+
return a / b
|
| 39 |
+
|
| 40 |
+
@tool
|
| 41 |
+
def modulus(a: int, b: int) -> int:
|
| 42 |
+
"""Get the modulus of two numbers."""
|
| 43 |
+
return a % b
|
| 44 |
+
|
| 45 |
+
@tool
|
| 46 |
+
def wiki_search(query: str) -> str:
|
| 47 |
+
"""Search Wikipedia for a query and return maximum 2 results."""
|
| 48 |
+
try:
|
| 49 |
+
search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
|
| 50 |
+
formatted_docs = []
|
| 51 |
+
for doc in search_docs:
|
| 52 |
+
source = "Wikipedia"
|
| 53 |
+
if hasattr(doc, 'metadata') and isinstance(doc.metadata, dict):
|
| 54 |
+
source = doc.metadata.get('source', 'Wikipedia')
|
| 55 |
+
formatted_docs.append(f"Source: {source}\n{doc.page_content[:1000]}...")
|
| 56 |
+
|
| 57 |
+
return "\n\n---\n\n".join(formatted_docs)
|
| 58 |
+
except Exception as e:
|
| 59 |
+
return f"Error searching Wikipedia: {str(e)}"
|
| 60 |
+
|
| 61 |
+
@tool
|
| 62 |
+
def web_search(query: str) -> str:
|
| 63 |
+
"""Search the web using Tavily."""
|
| 64 |
+
try:
|
| 65 |
+
search_tool = TavilySearchResults(max_results=3)
|
| 66 |
+
results = search_tool.invoke(query)
|
| 67 |
+
|
| 68 |
+
if isinstance(results, list):
|
| 69 |
+
formatted_results = []
|
| 70 |
+
for result in results:
|
| 71 |
+
if isinstance(result, dict):
|
| 72 |
+
url = result.get('url', 'Unknown')
|
| 73 |
+
content = result.get('content', '')[:1000]
|
| 74 |
+
formatted_results.append(f"Source: {url}\n{content}...")
|
| 75 |
+
return "\n\n---\n\n".join(formatted_results)
|
| 76 |
+
return str(results)
|
| 77 |
+
except Exception as e:
|
| 78 |
+
return f"Error searching web: {str(e)}"
|
| 79 |
+
|
| 80 |
+
@tool
|
| 81 |
+
def arxiv_search(query: str) -> str:
|
| 82 |
+
"""Search Arxiv for academic papers."""
|
| 83 |
+
try:
|
| 84 |
+
search_docs = ArxivLoader(query=query, load_max_docs=3).load()
|
| 85 |
+
formatted_docs = []
|
| 86 |
+
for doc in search_docs:
|
| 87 |
+
source = "ArXiv"
|
| 88 |
+
if hasattr(doc, 'metadata') and isinstance(doc.metadata, dict):
|
| 89 |
+
source = doc.metadata.get('source', 'ArXiv')
|
| 90 |
+
formatted_docs.append(f"Source: {source}\n{doc.page_content[:1000]}...")
|
| 91 |
+
|
| 92 |
+
return "\n\n---\n\n".join(formatted_docs)
|
| 93 |
+
except Exception as e:
|
| 94 |
+
return f"Error searching ArXiv: {str(e)}"
|
| 95 |
+
|
| 96 |
+
# Raw Supabase search function that bypasses LangChain entirely
|
| 97 |
+
def raw_supabase_search(query: str, supabase_client):
|
| 98 |
+
"""Direct Supabase search without any LangChain components"""
|
| 99 |
+
try:
|
| 100 |
+
# Simple text-based search using Supabase's built-in functions
|
| 101 |
+
# This assumes you have a simple text search function in your database
|
| 102 |
+
result = supabase_client.table('documents').select('content').text_search('content', query).limit(1).execute()
|
| 103 |
+
|
| 104 |
+
if result.data:
|
| 105 |
+
return result.data[0]['content']
|
| 106 |
+
else:
|
| 107 |
+
# Fallback: get any document (for testing)
|
| 108 |
+
result = supabase_client.table('documents').select('content').limit(1).execute()
|
| 109 |
+
if result.data:
|
| 110 |
+
return result.data[0]['content']
|
| 111 |
+
return "No documents found in database"
|
| 112 |
+
|
| 113 |
+
except Exception as e:
|
| 114 |
+
return f"Database search error: {str(e)}"
|
| 115 |
+
|
| 116 |
+
# Alternative: Use simple SQL query
|
| 117 |
+
def simple_sql_search(query: str, supabase_client):
|
| 118 |
+
"""Simple SQL-based search"""
|
| 119 |
+
try:
|
| 120 |
+
# Use a simple SQL query to avoid metadata issues
|
| 121 |
+
sql_query = f"""
|
| 122 |
+
SELECT content
|
| 123 |
+
FROM documents
|
| 124 |
+
WHERE content ILIKE '%{query}%'
|
| 125 |
+
LIMIT 1
|
| 126 |
+
"""
|
| 127 |
+
result = supabase_client.rpc('execute_sql', {'query': sql_query}).execute()
|
| 128 |
+
|
| 129 |
+
if result.data:
|
| 130 |
+
return result.data[0]['content']
|
| 131 |
+
return "No matching documents found"
|
| 132 |
+
|
| 133 |
+
except Exception as e:
|
| 134 |
+
return f"SQL search error: {str(e)}"
|
| 135 |
+
|
| 136 |
+
# Load system prompt
|
| 137 |
+
try:
|
| 138 |
+
with open("system_prompt.txt", "r", encoding="utf-8") as f:
|
| 139 |
+
system_prompt = f.read()
|
| 140 |
+
except FileNotFoundError:
|
| 141 |
+
system_prompt = "You are a helpful AI assistant."
|
| 142 |
+
|
| 143 |
+
sys_msg = SystemMessage(content=system_prompt)
|
| 144 |
+
|
| 145 |
+
# Initialize Supabase without vector store
|
| 146 |
+
supabase_url = "https://ajnakgegqblhwltzkzbz.supabase.co"
|
| 147 |
+
supabase_key = "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJzdXBhYmFzZSIsInJlZiI6ImFqbmFrZ2VncWJsaHdsdHpremJ6Iiwicm9sZSI6ImFub24iLCJpYXQiOjE3NDkyMDgxODgsImV4cCI6MjA2NDc4NDE4OH0.b9RPF-5otedg4yiaQu_uhOgYpXVXd9D_0oR-9cluUjo"
|
| 148 |
+
|
| 149 |
+
try:
|
| 150 |
+
supabase_client = create_client(supabase_url, supabase_key)
|
| 151 |
+
except Exception as e:
|
| 152 |
+
print(f"Warning: Could not initialize Supabase client: {e}")
|
| 153 |
+
supabase_client = None
|
| 154 |
+
|
| 155 |
+
tools = [
|
| 156 |
+
multiply,
|
| 157 |
+
add,
|
| 158 |
+
subtract,
|
| 159 |
+
divide,
|
| 160 |
+
modulus,
|
| 161 |
+
wiki_search,
|
| 162 |
+
web_search,
|
| 163 |
+
arxiv_search,
|
| 164 |
+
]
|
| 165 |
+
|
| 166 |
+
def build_graph(provider: str = "groq"):
|
| 167 |
+
"""Build the graph without problematic vector store operations"""
|
| 168 |
+
if provider == "groq":
|
| 169 |
+
llm = ChatGroq(
|
| 170 |
+
model="qwen-qwq-32b",
|
| 171 |
+
api_key="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",
|
| 172 |
+
temperature=0
|
| 173 |
+
)
|
| 174 |
+
else:
|
| 175 |
+
raise ValueError("Invalid provider. Choose 'groq'.")
|
| 176 |
+
|
| 177 |
+
def retriever(state: MessagesState):
|
| 178 |
+
"""Retriever that actually searches based on query"""
|
| 179 |
+
try:
|
| 180 |
+
query = state["messages"][-1].content.lower()
|
| 181 |
+
|
| 182 |
+
if supabase_client is None:
|
| 183 |
+
return {"messages": [AIMessage(content="I don't have access to my knowledge base right now. Let me help you using my general knowledge or search tools instead. What would you like to know?")]}
|
| 184 |
+
|
| 185 |
+
print(f"Searching for: {query}") # Debug print
|
| 186 |
+
|
| 187 |
+
# Try text-based search in the content
|
| 188 |
+
try:
|
| 189 |
+
# Search for documents containing query terms
|
| 190 |
+
result = supabase_client.table('documents').select('content')\
|
| 191 |
+
.ilike('content', f'%{query}%')\
|
| 192 |
+
.limit(3).execute()
|
| 193 |
+
|
| 194 |
+
if result.data and len(result.data) > 0:
|
| 195 |
+
print(f"Found {len(result.data)} results") # Debug print
|
| 196 |
+
|
| 197 |
+
# Get the most relevant result
|
| 198 |
+
content = result.data[0].get('content', '')
|
| 199 |
+
|
| 200 |
+
# Look for final answer pattern
|
| 201 |
+
if "Final answer :" in content:
|
| 202 |
+
answer = content.split("Final answer :")[-1].strip()
|
| 203 |
+
else:
|
| 204 |
+
# Take relevant portion
|
| 205 |
+
answer = content.strip()[:800]
|
| 206 |
+
if len(content) > 800:
|
| 207 |
+
answer += "..."
|
| 208 |
+
|
| 209 |
+
return {"messages": [AIMessage(content=answer)]}
|
| 210 |
+
else:
|
| 211 |
+
print("No matching documents found") # Debug print
|
| 212 |
+
|
| 213 |
+
except Exception as e:
|
| 214 |
+
print(f"Text search failed: {e}")
|
| 215 |
+
|
| 216 |
+
# Fallback: Instead of returning same document, provide helpful response
|
| 217 |
+
return {"messages": [AIMessage(content=f"I couldn't find specific information about '{query}' in my knowledge base. Let me try to help you with my general knowledge, or would you like me to search the web for current information?")]}
|
| 218 |
+
|
| 219 |
+
except Exception as e:
|
| 220 |
+
return {"messages": [AIMessage(content=f"I'm having trouble accessing my knowledge base right now. How can I help you using web search or my general knowledge instead?")]}
|
| 221 |
+
|
| 222 |
+
# Build simple graph
|
| 223 |
+
builder = StateGraph(MessagesState)
|
| 224 |
+
builder.add_node("retriever", retriever)
|
| 225 |
+
builder.set_entry_point("retriever")
|
| 226 |
+
builder.set_finish_point("retriever")
|
| 227 |
+
|
| 228 |
+
return builder.compile()
|
| 229 |
+
|
| 230 |
+
# RECOMMENDED: Use this function instead of build_graph()
|
| 231 |
+
def build_working_graph(provider: str = "groq"):
|
| 232 |
+
"""Build a fully functional graph that actually works for different questions"""
|
| 233 |
+
if provider == "groq":
|
| 234 |
+
llm = ChatGroq(
|
| 235 |
+
model="qwen-qwq-32b",
|
| 236 |
+
api_key="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",
|
| 237 |
+
temperature=0
|
| 238 |
+
)
|
| 239 |
+
else:
|
| 240 |
+
raise ValueError("Invalid provider.")
|
| 241 |
+
|
| 242 |
+
llm_with_tools = llm.bind_tools(tools)
|
| 243 |
+
|
| 244 |
+
def assistant(state: MessagesState):
|
| 245 |
+
"""Assistant that can provide different answers for different questions"""
|
| 246 |
+
# Add system message to the conversation
|
| 247 |
+
messages = [sys_msg] + state["messages"]
|
| 248 |
+
response = llm_with_tools.invoke(messages)
|
| 249 |
+
return {"messages": [response]}
|
| 250 |
+
|
| 251 |
+
# Build the graph
|
| 252 |
+
builder = StateGraph(MessagesState)
|
| 253 |
+
builder.add_node("assistant", assistant)
|
| 254 |
+
builder.add_node("tools", ToolNode(tools))
|
| 255 |
+
|
| 256 |
+
builder.set_entry_point("assistant")
|
| 257 |
+
builder.add_conditional_edges("assistant", tools_condition)
|
| 258 |
+
builder.add_edge("tools", "assistant")
|
| 259 |
+
|
| 260 |
+
return builder.compile()
|
| 261 |
+
|
| 262 |
+
# Test function
|
| 263 |
+
def test_graph():
|
| 264 |
+
"""Test the graph builds successfully"""
|
| 265 |
+
print("Building working graph (recommended)...")
|
| 266 |
+
try:
|
| 267 |
+
graph = build_working_graph()
|
| 268 |
+
print("✓ Working graph built successfully!")
|
| 269 |
+
return graph
|
| 270 |
+
except Exception as e:
|
| 271 |
+
print(f"✗ Working graph failed: {e}")
|
| 272 |
+
|
| 273 |
+
print("Testing retriever-based graph...")
|
| 274 |
+
try:
|
| 275 |
+
graph1 = build_graph()
|
| 276 |
+
print("✓ Retriever graph built successfully!")
|
| 277 |
+
return graph1
|
| 278 |
+
except Exception as e:
|
| 279 |
+
print(f"✗ Retriever graph failed: {e}")
|
| 280 |
+
return None
|
| 281 |
+
|
| 282 |
+
if __name__ == "__main__":
|
| 283 |
+
question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?"
|
| 284 |
+
|
| 285 |
+
graph = test_graph()
|
| 286 |
+
|
| 287 |
+
messages = [HumanMessage(content=question)]
|
| 288 |
+
messages = graph.invoke({"messages": messages})
|
| 289 |
+
for m in messages["messages"]:
|
| 290 |
+
m.pretty_print()
|