Spaces:
Sleeping
Sleeping
| import os | |
| from dotenv import load_dotenv | |
| from langgraph.graph import START, StateGraph, MessagesState | |
| from langgraph.prebuilt import tools_condition, ToolNode | |
| from langchain_google_genai import ChatGoogleGenerativeAI | |
| from langchain_groq import ChatGroq | |
| from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings | |
| from langchain_community.tools.tavily_search import TavilySearchResults | |
| from langchain_community.document_loaders import WikipediaLoader, ArxivLoader | |
| from langchain_community.vectorstores import Chroma | |
| from langchain_core.documents import Document | |
| from langchain_core.messages import SystemMessage, HumanMessage | |
| from langchain_core.tools import tool | |
| from langchain.tools.retriever import create_retriever_tool | |
| import json | |
| from langchain.vectorstores import Chroma | |
| from langchain.embeddings import HuggingFaceEmbeddings | |
| from langchain.schema import Document | |
| load_dotenv() | |
| os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python" | |
| groq_api_key = os.getenv("GROQ_API_KEY") | |
| # Tools | |
| def multiply(a: int, b: int) -> int: | |
| """Multiply two numbers. | |
| Args: | |
| a: first int | |
| b: second int | |
| """ | |
| return a * b | |
| def add(a: int, b: int) -> int: | |
| """Add two numbers. | |
| Args: | |
| a: first int | |
| b: second int | |
| """ | |
| return a + b | |
| def subtract(a: int, b: int) -> int: | |
| """Subtract two numbers. | |
| Args: | |
| a: first int | |
| b: second int | |
| """ | |
| return a - b | |
| def divide(a: int, b: int) -> int: | |
| """Divide two numbers. | |
| Args: | |
| a: first int | |
| b: second int | |
| """ | |
| if b == 0: | |
| raise ValueError("Cannot divide by zero.") | |
| return a / b | |
| def modulus(a: int, b: int) -> int: | |
| """Get the modulus of two numbers. | |
| Args: | |
| a: first int | |
| b: second int | |
| """ | |
| return a % b | |
| def wiki_search(query: str) -> str: | |
| """Search Wikipedia for a query and return maximum 2 results. | |
| Args: | |
| query: The search query.""" | |
| search_docs = WikipediaLoader(query=query, load_max_docs=2).load() | |
| formatted_search_docs = "\n\n---\n\n".join( | |
| [ | |
| f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>' | |
| for doc in search_docs | |
| ]) | |
| return {"wiki_results": formatted_search_docs} | |
| def web_search(query: str) -> str: | |
| """Search Tavily for a query and return maximum 3 results. | |
| Args: | |
| query: The search query.""" | |
| search_docs = TavilySearchResults(max_results=3).invoke(query=query) | |
| formatted_search_docs = "\n\n---\n\n".join( | |
| [ | |
| f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>' | |
| for doc in search_docs | |
| ]) | |
| return {"web_results": formatted_search_docs} | |
| def arvix_search(query: str) -> str: | |
| """Search Arxiv for a query and return maximum 3 result. | |
| Args: | |
| query: The search query.""" | |
| search_docs = ArxivLoader(query=query, load_max_docs=3).load() | |
| formatted_search_docs = "\n\n---\n\n".join( | |
| [ | |
| f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>' | |
| for doc in search_docs | |
| ]) | |
| return {"arvix_results": formatted_search_docs} | |
| def similar_question_search(question: str) -> str: | |
| """Search the vector database for similar questions and return the first results. | |
| Args: | |
| question: the question human provided.""" | |
| matched_docs = vector_store.similarity_search(query, 3) | |
| formatted_search_docs = "\n\n---\n\n".join( | |
| [ | |
| f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>' | |
| for doc in matched_docs | |
| ]) | |
| return {"similar_questions": formatted_search_docs} | |
| # Load system prompt | |
| system_prompt = """ | |
| You are a helpful assistant tasked with answering questions using a set of tools. | |
| Now, I will ask you a question. Report your thoughts, and finish your answer with the following template: | |
| FINAL ANSWER: [YOUR FINAL ANSWER]. | |
| YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string. | |
| Your answer should only start with "FINAL ANSWER: ", then follows with the answer. | |
| """ | |
| # System message | |
| sys_msg = SystemMessage(content=system_prompt) | |
| embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") | |
| with open('metadata.jsonl', 'r') as jsonl_file: | |
| json_list = list(jsonl_file) | |
| json_QA = [] | |
| for json_str in json_list: | |
| json_data = json.loads(json_str) | |
| json_QA.append(json_data) | |
| documents = [] | |
| for sample in json_QA: | |
| content = f"Question : {sample['Question']}\n\nFinal answer : {sample['Final answer']}" | |
| metadata = {"source": sample["task_id"]} | |
| documents.append(Document(page_content=content, metadata=metadata)) | |
| # Initialize vector store and add documents | |
| vector_store = Chroma.from_documents( | |
| documents=documents, | |
| embedding=embeddings, | |
| persist_directory="./chroma_db", | |
| collection_name="my_collection" | |
| ) | |
| vector_store.persist() | |
| print("Documents inserted:", vector_store._collection.count()) | |
| # Retriever tool (optional if you want to expose to agent) | |
| retriever_tool = create_retriever_tool( | |
| retriever=vector_store.as_retriever(), | |
| name="Question Search", | |
| description="A tool to retrieve similar questions from a vector store.", | |
| ) | |
| # Tool list | |
| tools = [ | |
| multiply, add, subtract, divide, modulus, | |
| wiki_search, web_search, arvix_search, | |
| ] | |
| # Build graph | |
| def build_graph(provider: str = "groq"): | |
| llm = ChatGroq(model="qwen-qwq-32b", temperature=0,api_key=groq_api_key) | |
| llm_with_tools = llm.bind_tools(tools) | |
| def assistant(state: MessagesState): | |
| return {"messages": [llm_with_tools.invoke(state["messages"])]} | |
| def retriever(state: MessagesState): | |
| similar = vector_store.similarity_search(state["messages"][0].content) | |
| if similar: | |
| example_msg = HumanMessage(content=f"Here is a similar question:\n\n{similar[0].page_content}") | |
| return {"messages": [sys_msg] + state["messages"] + [example_msg]} | |
| return {"messages": [sys_msg] + state["messages"]} | |
| builder = StateGraph(MessagesState) | |
| builder.add_node("retriever", retriever) | |
| builder.add_node("assistant", assistant) | |
| builder.add_node("tools", ToolNode(tools)) | |
| builder.add_edge(START, "retriever") | |
| builder.add_edge("retriever", "assistant") | |
| builder.add_conditional_edges("assistant", tools_condition) | |
| builder.add_edge("tools", "assistant") | |
| return builder.compile() |