Spaces:
Running
Running
File size: 11,737 Bytes
caf1e10 3db0462 74d6544 0dfdfe1 68c074d 0dfdfe1 caf1e10 0dfdfe1 68c074d 0dfdfe1 68c074d 0dfdfe1 68c074d 0dfdfe1 68c074d 0dfdfe1 68c074d 0dfdfe1 9396c0f 0dfdfe1 9396c0f 68c074d 0dfdfe1 caf1e10 0dfdfe1 3db0462 0dfdfe1 caf1e10 0dfdfe1 68c074d 0dfdfe1 3db0462 0dfdfe1 68c074d 0dfdfe1 68c074d 0dfdfe1 68c074d 0dfdfe1 3db0462 0dfdfe1 68c074d 0dfdfe1 3db0462 0dfdfe1 68c074d 0dfdfe1 3db0462 68c074d 0dfdfe1 68c074d 0dfdfe1 68c074d 0dfdfe1 68c074d 0dfdfe1 3db0462 68c074d 0dfdfe1 3db0462 41ca0d8 0dfdfe1 41ca0d8 68c074d 0dfdfe1 caf1e10 0dfdfe1 74d6544 caf1e10 41ca0d8 0dfdfe1 caf1e10 0dfdfe1 caf1e10 aeeb4b5 caf1e10 0dfdfe1 41ca0d8 68c074d 0dfdfe1 41ca0d8 0dfdfe1 41ca0d8 3db0462 0dfdfe1 3db0462 41ca0d8 0dfdfe1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 |
import uvicorn
import os
import asyncio
import io
import time
import re
import shutil
from contextlib import asynccontextmanager
from typing import Optional, AsyncGenerator, List
import logging
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import StreamingResponse
from pydantic import BaseModel, Field
import numpy as np
from pydub import AudioSegment
from kittentts import KittenTTS
LOG_LEVEL = os.getenv("LOG_LEVEL", "WARNING").upper()
logging.basicConfig(
level=LOG_LEVEL,
format="%(asctime)s - %(levelname)s - %(message)s"
)
logger = logging.getLogger(__name__)
# --- FFmpeg Detection (IMPROVED) ---
def setup_ffmpeg():
"""Detect FFmpeg in system PATH and configure pydub"""
# Check if ffmpeg is available in system PATH
ffmpeg_path = shutil.which("ffmpeg")
if ffmpeg_path:
logger.info(f"β
FFmpeg found at: {ffmpeg_path}")
# Test if FFmpeg can actually export MP3
try:
# Create a simple test audio and try MP3 export
test_audio = AudioSegment.silent(duration=100) # 100ms silence
test_buffer = io.BytesIO()
test_audio.export(test_buffer, format="mp3")
print("β
FFmpeg MP3 export test: PASSED")
return True
except Exception as e:
logger.error(f"β FFmpeg MP3 export test failed: {e}")
return False
else:
logger.warning("β FFmpeg not found in PATH")
logger.warning("π‘ Make sure FFmpeg is installed and available in system PATH")
return False
# Check FFmpeg availability
ffmpeg_available = setup_ffmpeg()
# --- Configuration ---
class Config:
MODEL_NAME = os.getenv("MODEL_NAME", "KittenML/kitten-tts-nano-0.2")
MAX_TEXT_LENGTH = int(os.getenv("MAX_TEXT_LENGTH", "2000"))
# Audio Properties
FRAME_RATE = 24000
CHANNELS = 1
SAMPLE_WIDTH = 2
# Available voices
VOICES = [
"expr-voice-2-f", "expr-voice-2-m", "expr-voice-3-f", "expr-voice-3-m",
"expr-voice-4-f", "expr-voice-4-m", "expr-voice-5-f", "expr-voice-5-m"
]
# --- Global State ---
class AppState:
model: Optional[KittenTTS] = None
model_ready: bool = False
app_state = AppState()
# --- Lifespan Management ---
@asynccontextmanager
async def lifespan(app: FastAPI):
# Startup
print("π Starting Kitten TTS API...")
# Load model
try:
print(f"π¦ Loading model: {Config.MODEL_NAME}")
app_state.model = KittenTTS(Config.MODEL_NAME)
# Quick warm-up
print("π₯ Warming up model...")
test_audio = app_state.model.generate(text="Hello", voice=Config.VOICES[0])
print(f"β
Model warm-up complete. Test audio shape: {test_audio.shape}")
app_state.model_ready = True
print("β
Model loaded and ready!")
except Exception as e:
logger.critical(f"β Model loading failed: {e}", exc_info=True)
app_state.model_ready = False
yield
# Shutdown
print("π Shutting down Kitten TTS API...")
app_state.model_ready = False
app_state.model = None
# --- App Initialization ---
app = FastAPI(
title="Kitten TTS API",
version="1.1.0",
description="High-quality Text-to-Speech API with streaming support",
lifespan=lifespan
)
# --- CORS Middleware ---
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# --- Pydantic Models ---
class SpeechRequest(BaseModel):
input: str = Field(..., min_length=1, max_length=Config.MAX_TEXT_LENGTH)
model: str = Field(default="kitten-nano-0.2")
voice: str = Field(default=Config.VOICES[0])
speed: float = Field(default=1.0, ge=0.5, le=2.0)
response_format: str = Field(default="mp3", pattern="^(mp3|wav)$")
class HealthResponse(BaseModel):
class Config:
protected_namespaces = ()
status: str
model_ready: bool
voices_available: int
version: str
ffmpeg_available: bool
# --- Text Chunking ---
def split_text_for_streaming(text: str) -> List[str]:
"""Split text into natural speaking chunks."""
if len(text) <= 150:
return [text]
sentences = re.split(r'(?<=[.!?;:])\s+', text)
chunks = []
current_chunk = ""
for sentence in sentences:
if not sentence.strip():
continue
if current_chunk and len(current_chunk) + len(sentence) > 200:
chunks.append(current_chunk.strip())
current_chunk = sentence
else:
current_chunk = f"{current_chunk} {sentence}".strip() if current_chunk else sentence
if current_chunk:
chunks.append(current_chunk)
logger.info(f"π Split text into {len(chunks)} chunks")
return [chunk for chunk in chunks if chunk.strip()]
# --- Audio Generation (IMPROVED) ---
def _generate_audio_chunk(text: str, voice: str, speed: float, format: str) -> Optional[bytes]:
"""Generate audio chunk in specified format."""
try:
if not app_state.model or not app_state.model_ready:
raise RuntimeError("Model not ready")
logger.info(f"π΅ Generating audio for: '{text[:50]}...'")
# Generate audio
numpy_audio_data = app_state.model.generate(text=text, voice=voice)
# Debug audio range
audio_range = np.abs(numpy_audio_data).max()
logger.debug(f"π Audio range: {audio_range:.6f}")
if audio_range < 0.001:
logger.warning(f"β οΈ WARNING: Generated audio appears to be silent!")
# Convert to 16-bit PCM
numpy_audio_int16 = (numpy_audio_data * 32767).astype(np.int16)
raw_pcm_bytes = numpy_audio_int16.tobytes()
# Create AudioSegment
audio_segment = AudioSegment(
data=raw_pcm_bytes,
sample_width=Config.SAMPLE_WIDTH,
frame_rate=Config.FRAME_RATE,
channels=Config.CHANNELS
)
# Apply speed adjustment
if speed != 1.0:
logger.info(f"β‘ Applying speed: {speed}x")
audio_segment = audio_segment.speedup(playback_speed=speed)
# Export to requested format
buffer = io.BytesIO()
if format == "mp3" and ffmpeg_available:
try:
audio_segment.export(buffer, format="mp3", bitrate="64k")
mp3_data = buffer.getvalue()
logger.debug(f"π¦ Generated MP3 chunk: {len(mp3_data)} bytes")
return mp3_data
except Exception as e:
logger.warning(f"β MP3 export failed, falling back to WAV: {e}")
# Clear buffer and fall back to WAV
buffer = io.BytesIO()
format = "wav"
# WAV format (fallback or requested)
audio_segment.export(buffer, format="wav")
wav_data = buffer.getvalue()
logger.debug(f"π¦ Generated WAV chunk: {len(wav_data)} bytes")
return wav_data
except Exception as e:
logger.exception(f"β Audio generation error: {e}")
import traceback
traceback.print_exc()
return None
async def audio_stream_generator(text: str, voice: str, speed: float, format: str) -> AsyncGenerator[bytes, None]:
"""Async generator for audio streaming."""
chunks = split_text_for_streaming(text)
if not chunks:
yield b""
return
for i, chunk in enumerate(chunks):
if not chunk.strip():
continue
logger.info(f"π΅ Processing chunk {i+1}/{len(chunks)}")
audio_chunk_bytes = await asyncio.to_thread(
_generate_audio_chunk,
text=chunk,
voice=voice,
speed=speed,
format=format
)
if audio_chunk_bytes:
yield audio_chunk_bytes
await asyncio.sleep(0.01)
# --- WAV Generation ---
def generate_wav_audio(text: str, voice: str, speed: float) -> bytes:
"""Generate WAV audio without streaming."""
try:
if not app_state.model_ready:
raise RuntimeError("Service unavailable")
# Generate audio
numpy_audio_data = app_state.model.generate(text=text, voice=voice)
numpy_audio_int16 = (numpy_audio_data * 32767).astype(np.int16)
raw_pcm_bytes = numpy_audio_int16.tobytes()
# Create audio segment
audio_segment = AudioSegment(
data=raw_pcm_bytes,
sample_width=Config.SAMPLE_WIDTH,
frame_rate=Config.FRAME_RATE,
channels=Config.CHANNELS
)
# Apply speed
if speed != 1.0:
audio_segment = audio_segment.speedup(playback_speed=speed)
# Export to WAV
wav_io = io.BytesIO()
audio_segment.export(wav_io, format="wav")
return wav_io.getvalue()
except Exception as e:
logger.exception(f"β WAV generation error: {e}")
raise RuntimeError("Audio generation failed")
# --- API Endpoints ---
@app.post("/v1/audio/speech")
async def generate_speech(speech_request: SpeechRequest):
"""Generate speech audio with streaming support."""
if speech_request.voice not in Config.VOICES:
raise HTTPException(
status_code=400,
detail=f"Voice must be one of {Config.VOICES}"
)
if not app_state.model_ready:
raise HTTPException(
status_code=503,
detail="Service temporarily unavailable."
)
try:
logger.info(f"π― TTS Request: voice={speech_request.voice}, speed={speech_request.speed}, format={speech_request.response_format}")
if speech_request.response_format == "mp3":
return StreamingResponse(
audio_stream_generator(
text=speech_request.input,
voice=speech_request.voice,
speed=speech_request.speed,
format="mp3"
),
media_type="audio/mpeg",
headers={"Content-Disposition": "attachment; filename=speech.mp3"}
)
elif speech_request.response_format == "wav":
wav_data = await asyncio.to_thread(
generate_wav_audio,
speech_request.input,
speech_request.voice,
speech_request.speed
)
return StreamingResponse(
io.BytesIO(wav_data),
media_type="audio/wav",
headers={"Content-Disposition": "attachment; filename=speech.wav"}
)
except Exception as e:
logger.exception(f"β Endpoint error: {e}")
import traceback
traceback.print_exc()
raise HTTPException(status_code=500, detail=f"TTS generation failed: {str(e)}")
@app.get("/v1/audio/voices")
async def list_voices():
"""List available voices."""
return {"voices": Config.VOICES}
@app.get("/health")
async def health_check() -> HealthResponse:
"""Health check endpoint."""
return HealthResponse(
status="healthy" if app_state.model_ready else "unhealthy",
model_ready=app_state.model_ready,
voices_available=len(Config.VOICES),
version="1.1.0",
ffmpeg_available=ffmpeg_available
)
if __name__ == "__main__":
uvicorn.run(
app,
host="0.0.0.0",
port=7860,
workers=1,
log_level="info"
) |