File size: 11,737 Bytes
caf1e10
3db0462
74d6544
0dfdfe1
 
 
 
 
 
68c074d
0dfdfe1
 
 
 
 
caf1e10
0dfdfe1
 
68c074d
 
 
 
 
 
0dfdfe1
 
 
 
 
 
 
68c074d
0dfdfe1
 
 
 
 
 
 
 
 
 
68c074d
0dfdfe1
 
68c074d
 
0dfdfe1
 
 
 
 
 
 
68c074d
0dfdfe1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9396c0f
0dfdfe1
 
 
 
 
 
 
 
 
 
 
9396c0f
68c074d
0dfdfe1
 
 
 
 
 
 
 
caf1e10
0dfdfe1
 
 
 
 
 
 
3db0462
0dfdfe1
 
 
 
 
 
 
 
caf1e10
0dfdfe1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68c074d
0dfdfe1
 
 
 
 
3db0462
0dfdfe1
 
 
68c074d
0dfdfe1
 
 
 
 
 
68c074d
0dfdfe1
 
68c074d
0dfdfe1
 
 
 
3db0462
0dfdfe1
 
 
 
 
 
 
 
 
 
68c074d
0dfdfe1
 
 
 
 
 
3db0462
0dfdfe1
 
68c074d
0dfdfe1
3db0462
68c074d
0dfdfe1
 
 
 
 
 
 
68c074d
0dfdfe1
 
 
68c074d
0dfdfe1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68c074d
0dfdfe1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3db0462
 
68c074d
0dfdfe1
3db0462
 
41ca0d8
0dfdfe1
 
 
 
 
 
 
 
 
 
 
 
 
 
41ca0d8
 
68c074d
0dfdfe1
 
caf1e10
0dfdfe1
 
 
 
 
 
74d6544
caf1e10
 
41ca0d8
0dfdfe1
 
 
 
 
 
 
caf1e10
 
0dfdfe1
caf1e10
aeeb4b5
caf1e10
0dfdfe1
41ca0d8
68c074d
0dfdfe1
 
41ca0d8
 
 
 
0dfdfe1
 
41ca0d8
3db0462
0dfdfe1
 
 
 
 
 
 
 
 
3db0462
41ca0d8
 
0dfdfe1
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
import uvicorn
import os
import asyncio
import io
import time
import re
import shutil
from contextlib import asynccontextmanager
from typing import Optional, AsyncGenerator, List
import logging
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import StreamingResponse
from pydantic import BaseModel, Field
import numpy as np
from pydub import AudioSegment
from kittentts import KittenTTS

LOG_LEVEL = os.getenv("LOG_LEVEL", "WARNING").upper()
logging.basicConfig(
    level=LOG_LEVEL,
    format="%(asctime)s - %(levelname)s - %(message)s"
)
logger = logging.getLogger(__name__)
# --- FFmpeg Detection (IMPROVED) ---
def setup_ffmpeg():
    """Detect FFmpeg in system PATH and configure pydub"""
    # Check if ffmpeg is available in system PATH
    ffmpeg_path = shutil.which("ffmpeg")
    
    if ffmpeg_path:
        logger.info(f"βœ… FFmpeg found at: {ffmpeg_path}")
        
        # Test if FFmpeg can actually export MP3
        try:
            # Create a simple test audio and try MP3 export
            test_audio = AudioSegment.silent(duration=100)  # 100ms silence
            test_buffer = io.BytesIO()
            test_audio.export(test_buffer, format="mp3")
            print("βœ… FFmpeg MP3 export test: PASSED")
            return True
        except Exception as e:
            logger.error(f"❌ FFmpeg MP3 export test failed: {e}")
            return False
    else:
        logger.warning("❌ FFmpeg not found in PATH")
        logger.warning("πŸ’‘ Make sure FFmpeg is installed and available in system PATH")
        return False

# Check FFmpeg availability
ffmpeg_available = setup_ffmpeg()

# --- Configuration ---
class Config:
    MODEL_NAME = os.getenv("MODEL_NAME", "KittenML/kitten-tts-nano-0.2")
    MAX_TEXT_LENGTH = int(os.getenv("MAX_TEXT_LENGTH", "2000"))
    
    # Audio Properties
    FRAME_RATE = 24000
    CHANNELS = 1
    SAMPLE_WIDTH = 2
    
    # Available voices
    VOICES = [
        "expr-voice-2-f", "expr-voice-2-m", "expr-voice-3-f", "expr-voice-3-m",
        "expr-voice-4-f", "expr-voice-4-m", "expr-voice-5-f", "expr-voice-5-m"
    ]

# --- Global State ---
class AppState:
    model: Optional[KittenTTS] = None
    model_ready: bool = False

app_state = AppState()

# --- Lifespan Management ---
@asynccontextmanager
async def lifespan(app: FastAPI):
    # Startup
    print("πŸš€ Starting Kitten TTS API...")
    
    # Load model
    try:
        print(f"πŸ“¦ Loading model: {Config.MODEL_NAME}")
        app_state.model = KittenTTS(Config.MODEL_NAME)
        
        # Quick warm-up
        print("πŸ”₯ Warming up model...")
        test_audio = app_state.model.generate(text="Hello", voice=Config.VOICES[0])
        print(f"βœ… Model warm-up complete. Test audio shape: {test_audio.shape}")
        
        app_state.model_ready = True
        print("βœ… Model loaded and ready!")
        
    except Exception as e:
        logger.critical(f"❌ Model loading failed: {e}", exc_info=True)
        app_state.model_ready = False
    
    yield
    
    # Shutdown
    print("πŸ‘‹ Shutting down Kitten TTS API...")
    app_state.model_ready = False
    app_state.model = None

# --- App Initialization ---
app = FastAPI(
    title="Kitten TTS API",
    version="1.1.0",
    description="High-quality Text-to-Speech API with streaming support",
    lifespan=lifespan
)

# --- CORS Middleware ---
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# --- Pydantic Models ---
class SpeechRequest(BaseModel):
    input: str = Field(..., min_length=1, max_length=Config.MAX_TEXT_LENGTH)
    model: str = Field(default="kitten-nano-0.2")
    voice: str = Field(default=Config.VOICES[0])
    speed: float = Field(default=1.0, ge=0.5, le=2.0)
    response_format: str = Field(default="mp3", pattern="^(mp3|wav)$")

class HealthResponse(BaseModel):
    class Config:
        protected_namespaces = ()
    
    status: str
    model_ready: bool
    voices_available: int
    version: str
    ffmpeg_available: bool

# --- Text Chunking ---
def split_text_for_streaming(text: str) -> List[str]:
    """Split text into natural speaking chunks."""
    if len(text) <= 150:
        return [text]
    
    sentences = re.split(r'(?<=[.!?;:])\s+', text)
    
    chunks = []
    current_chunk = ""
    
    for sentence in sentences:
        if not sentence.strip():
            continue
            
        if current_chunk and len(current_chunk) + len(sentence) > 200:
            chunks.append(current_chunk.strip())
            current_chunk = sentence
        else:
            current_chunk = f"{current_chunk} {sentence}".strip() if current_chunk else sentence
    
    if current_chunk:
        chunks.append(current_chunk)
    
    logger.info(f"πŸ“ Split text into {len(chunks)} chunks")
    return [chunk for chunk in chunks if chunk.strip()]

# --- Audio Generation (IMPROVED) ---
def _generate_audio_chunk(text: str, voice: str, speed: float, format: str) -> Optional[bytes]:
    """Generate audio chunk in specified format."""
    try:
        if not app_state.model or not app_state.model_ready:
            raise RuntimeError("Model not ready")
        
        logger.info(f"🎡 Generating audio for: '{text[:50]}...'")
        
        # Generate audio
        numpy_audio_data = app_state.model.generate(text=text, voice=voice)
        
        # Debug audio range
        audio_range = np.abs(numpy_audio_data).max()
        logger.debug(f"πŸ”Š Audio range: {audio_range:.6f}")
        
        if audio_range < 0.001:
            logger.warning(f"⚠️  WARNING: Generated audio appears to be silent!")
        
        # Convert to 16-bit PCM
        numpy_audio_int16 = (numpy_audio_data * 32767).astype(np.int16)
        raw_pcm_bytes = numpy_audio_int16.tobytes()

        # Create AudioSegment
        audio_segment = AudioSegment(
            data=raw_pcm_bytes,
            sample_width=Config.SAMPLE_WIDTH,
            frame_rate=Config.FRAME_RATE,
            channels=Config.CHANNELS
        )

        # Apply speed adjustment
        if speed != 1.0:
            logger.info(f"⚑ Applying speed: {speed}x")
            audio_segment = audio_segment.speedup(playback_speed=speed)

        # Export to requested format
        buffer = io.BytesIO()
        
        if format == "mp3" and ffmpeg_available:
            try:
                audio_segment.export(buffer, format="mp3", bitrate="64k")
                mp3_data = buffer.getvalue()
                logger.debug(f"πŸ“¦ Generated MP3 chunk: {len(mp3_data)} bytes")
                return mp3_data
            except Exception as e:
                logger.warning(f"❌ MP3 export failed, falling back to WAV: {e}")
                # Clear buffer and fall back to WAV
                buffer = io.BytesIO()
                format = "wav"
        
        # WAV format (fallback or requested)
        audio_segment.export(buffer, format="wav")
        wav_data = buffer.getvalue()
        logger.debug(f"πŸ“¦ Generated WAV chunk: {len(wav_data)} bytes")
        return wav_data
        
    except Exception as e:
        logger.exception(f"❌ Audio generation error: {e}")
        import traceback
        traceback.print_exc()
        return None

async def audio_stream_generator(text: str, voice: str, speed: float, format: str) -> AsyncGenerator[bytes, None]:
    """Async generator for audio streaming."""
    chunks = split_text_for_streaming(text)
    if not chunks:
        yield b""
        return

    for i, chunk in enumerate(chunks):
        if not chunk.strip():
            continue

        logger.info(f"🎡 Processing chunk {i+1}/{len(chunks)}")
        
        audio_chunk_bytes = await asyncio.to_thread(
            _generate_audio_chunk,
            text=chunk,
            voice=voice,
            speed=speed,
            format=format
        )

        if audio_chunk_bytes:
            yield audio_chunk_bytes
            await asyncio.sleep(0.01)

# --- WAV Generation ---
def generate_wav_audio(text: str, voice: str, speed: float) -> bytes:
    """Generate WAV audio without streaming."""
    try:
        if not app_state.model_ready:
            raise RuntimeError("Service unavailable")
        
        # Generate audio
        numpy_audio_data = app_state.model.generate(text=text, voice=voice)
        numpy_audio_int16 = (numpy_audio_data * 32767).astype(np.int16)
        raw_pcm_bytes = numpy_audio_int16.tobytes()
        
        # Create audio segment
        audio_segment = AudioSegment(
            data=raw_pcm_bytes,
            sample_width=Config.SAMPLE_WIDTH,
            frame_rate=Config.FRAME_RATE,
            channels=Config.CHANNELS
        )
        
        # Apply speed
        if speed != 1.0:
            audio_segment = audio_segment.speedup(playback_speed=speed)
        
        # Export to WAV
        wav_io = io.BytesIO()
        audio_segment.export(wav_io, format="wav")
        return wav_io.getvalue()
            
    except Exception as e:
        logger.exception(f"❌ WAV generation error: {e}")
        raise RuntimeError("Audio generation failed")

# --- API Endpoints ---
@app.post("/v1/audio/speech")
async def generate_speech(speech_request: SpeechRequest):
    """Generate speech audio with streaming support."""
    
    if speech_request.voice not in Config.VOICES:
        raise HTTPException(
            status_code=400, 
            detail=f"Voice must be one of {Config.VOICES}"
        )
    
    if not app_state.model_ready:
        raise HTTPException(
            status_code=503, 
            detail="Service temporarily unavailable."
        )

    try:
        logger.info(f"🎯 TTS Request: voice={speech_request.voice}, speed={speech_request.speed}, format={speech_request.response_format}")
        
        if speech_request.response_format == "mp3":
            return StreamingResponse(
                audio_stream_generator(
                    text=speech_request.input,
                    voice=speech_request.voice,
                    speed=speech_request.speed,
                    format="mp3"
                ),
                media_type="audio/mpeg",
                headers={"Content-Disposition": "attachment; filename=speech.mp3"}
            )
        
        elif speech_request.response_format == "wav":
            wav_data = await asyncio.to_thread(
                generate_wav_audio,
                speech_request.input,
                speech_request.voice,
                speech_request.speed
            )
            
            return StreamingResponse(
                io.BytesIO(wav_data),
                media_type="audio/wav",
                headers={"Content-Disposition": "attachment; filename=speech.wav"}
            )
            
    except Exception as e:
        logger.exception(f"❌ Endpoint error: {e}")
        import traceback
        traceback.print_exc()
        raise HTTPException(status_code=500, detail=f"TTS generation failed: {str(e)}")

@app.get("/v1/audio/voices")
async def list_voices():
    """List available voices."""
    return {"voices": Config.VOICES}

@app.get("/health")
async def health_check() -> HealthResponse:
    """Health check endpoint."""
    return HealthResponse(
        status="healthy" if app_state.model_ready else "unhealthy",
        model_ready=app_state.model_ready,
        voices_available=len(Config.VOICES),
        version="1.1.0",
        ffmpeg_available=ffmpeg_available
    )


if __name__ == "__main__":
    uvicorn.run(
        app, 
        host="0.0.0.0", 
        port=7860, 
        workers=1,
        log_level="info"
    )