Spaces:
Runtime error
Runtime error
Update src/txagent/txagent.py
Browse files- src/txagent/txagent.py +21 -223
src/txagent/txagent.py
CHANGED
|
@@ -1,22 +1,14 @@
|
|
| 1 |
import os
|
| 2 |
import logging
|
| 3 |
import torch
|
| 4 |
-
import pdfplumber
|
| 5 |
-
import pandas as pd
|
| 6 |
from typing import Dict, Optional, List, Union
|
| 7 |
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
|
| 8 |
from sentence_transformers import SentenceTransformer
|
| 9 |
-
from tooluniverse import ToolUniverse
|
| 10 |
-
from .toolrag import ToolRAGModel
|
| 11 |
|
| 12 |
-
# Configure logging
|
| 13 |
logging.basicConfig(
|
| 14 |
level=logging.INFO,
|
| 15 |
-
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
| 16 |
-
handlers=[
|
| 17 |
-
logging.StreamHandler(),
|
| 18 |
-
logging.FileHandler('txagent_core.log')
|
| 19 |
-
]
|
| 20 |
)
|
| 21 |
logger = logging.getLogger("TxAgent")
|
| 22 |
|
|
@@ -27,18 +19,10 @@ class TxAgent:
|
|
| 27 |
tool_files_dict: Optional[Dict] = None,
|
| 28 |
enable_finish: bool = True,
|
| 29 |
enable_rag: bool = False,
|
| 30 |
-
enable_summary: bool = False,
|
| 31 |
-
init_rag_num: int = 0,
|
| 32 |
-
step_rag_num: int = 0,
|
| 33 |
-
summary_mode: str = 'step',
|
| 34 |
-
summary_skip_last_k: int = 0,
|
| 35 |
-
summary_context_length: Optional[int] = None,
|
| 36 |
force_finish: bool = True,
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
enable_chat: bool = False,
|
| 41 |
-
additional_default_tools: Optional[List] = None):
|
| 42 |
|
| 43 |
# Initialization parameters
|
| 44 |
self.model_name = model_name
|
|
@@ -46,18 +30,10 @@ class TxAgent:
|
|
| 46 |
self.tool_files_dict = tool_files_dict or {}
|
| 47 |
self.enable_finish = enable_finish
|
| 48 |
self.enable_rag = enable_rag
|
| 49 |
-
self.enable_summary = enable_summary
|
| 50 |
-
self.summary_mode = summary_mode
|
| 51 |
-
self.summary_skip_last_k = summary_skip_last_k
|
| 52 |
-
self.summary_context_length = summary_context_length
|
| 53 |
-
self.init_rag_num = init_rag_num
|
| 54 |
-
self.step_rag_num = step_rag_num
|
| 55 |
self.force_finish = force_finish
|
| 56 |
-
self.avoid_repeat = avoid_repeat
|
| 57 |
-
self.seed = seed
|
| 58 |
self.enable_checker = enable_checker
|
| 59 |
-
self.
|
| 60 |
-
self.
|
| 61 |
|
| 62 |
# Device setup
|
| 63 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
@@ -66,24 +42,21 @@ class TxAgent:
|
|
| 66 |
self.model = None
|
| 67 |
self.tokenizer = None
|
| 68 |
self.rag_model = None
|
| 69 |
-
self.tooluniverse = None
|
| 70 |
|
| 71 |
# Prompts
|
| 72 |
-
self.prompt_multi_step = "You are a helpful assistant that solves problems through step-by-step reasoning."
|
| 73 |
-
self.self_prompt = "Strictly follow the instruction."
|
| 74 |
self.chat_prompt = "You are a helpful assistant for user chat."
|
| 75 |
|
| 76 |
-
logger.info(f"Initialized TxAgent with model: {model_name}
|
| 77 |
|
| 78 |
def init_model(self):
|
| 79 |
"""Initialize all models and components"""
|
| 80 |
try:
|
| 81 |
self.load_llm_model()
|
| 82 |
-
self.
|
| 83 |
-
|
| 84 |
-
logger.info("
|
| 85 |
except Exception as e:
|
| 86 |
-
logger.error(f"Model initialization failed: {str(e)}"
|
| 87 |
raise
|
| 88 |
|
| 89 |
def load_llm_model(self):
|
|
@@ -92,7 +65,6 @@ class TxAgent:
|
|
| 92 |
logger.info(f"Loading LLM model: {self.model_name}")
|
| 93 |
self.tokenizer = AutoTokenizer.from_pretrained(
|
| 94 |
self.model_name,
|
| 95 |
-
cache_dir=os.getenv("HF_HOME"),
|
| 96 |
trust_remote_code=True
|
| 97 |
)
|
| 98 |
|
|
@@ -100,39 +72,24 @@ class TxAgent:
|
|
| 100 |
self.model_name,
|
| 101 |
torch_dtype=torch.float16 if self.device.type == "cuda" else torch.float32,
|
| 102 |
device_map="auto",
|
| 103 |
-
cache_dir=os.getenv("HF_HOME"),
|
| 104 |
trust_remote_code=True
|
| 105 |
)
|
| 106 |
logger.info(f"LLM model loaded on {self.device}")
|
| 107 |
except Exception as e:
|
| 108 |
-
logger.error(f"Failed to load LLM model: {str(e)}"
|
| 109 |
raise
|
| 110 |
|
| 111 |
def load_rag_model(self):
|
| 112 |
"""Load the RAG model"""
|
| 113 |
try:
|
| 114 |
logger.info(f"Loading RAG model: {self.rag_model_name}")
|
| 115 |
-
self.rag_model =
|
|
|
|
|
|
|
|
|
|
| 116 |
logger.info("RAG model loaded successfully")
|
| 117 |
except Exception as e:
|
| 118 |
-
logger.error(f"Failed to load RAG model: {str(e)}"
|
| 119 |
-
raise
|
| 120 |
-
|
| 121 |
-
def load_tooluniverse(self):
|
| 122 |
-
"""Initialize the ToolUniverse"""
|
| 123 |
-
try:
|
| 124 |
-
logger.info("Loading ToolUniverse with files: %s", self.tool_files_dict)
|
| 125 |
-
self.tooluniverse = ToolUniverse(tool_files=self.tool_files_dict)
|
| 126 |
-
self.tooluniverse.load_tools()
|
| 127 |
-
|
| 128 |
-
# Prepare special tools
|
| 129 |
-
special_tools = self.tooluniverse.prepare_tool_prompts(
|
| 130 |
-
self.tooluniverse.tool_category_dicts["special_tools"])
|
| 131 |
-
self.special_tools_name = [tool['name'] for tool in special_tools]
|
| 132 |
-
|
| 133 |
-
logger.info(f"ToolUniverse loaded with {len(self.special_tools_name)} special tools")
|
| 134 |
-
except Exception as e:
|
| 135 |
-
logger.error(f"Failed to load ToolUniverse: {str(e)}", exc_info=True)
|
| 136 |
raise
|
| 137 |
|
| 138 |
def chat(self, message: str, history: Optional[List[Dict]] = None,
|
|
@@ -176,179 +133,20 @@ class TxAgent:
|
|
| 176 |
return response.strip()
|
| 177 |
|
| 178 |
except Exception as e:
|
| 179 |
-
logger.error(f"Chat failed: {str(e)}"
|
| 180 |
raise RuntimeError(f"Chat failed: {str(e)}")
|
| 181 |
|
| 182 |
-
def run_multistep_agent(self, message: str, temperature: float = 0.7,
|
| 183 |
-
max_new_tokens: int = 512, max_round: int = 5) -> str:
|
| 184 |
-
"""Run multi-step reasoning agent"""
|
| 185 |
-
try:
|
| 186 |
-
conversation = [{"role": "system", "content": self.prompt_multi_step}]
|
| 187 |
-
conversation.append({"role": "user", "content": message})
|
| 188 |
-
|
| 189 |
-
for round_num in range(1, max_round + 1):
|
| 190 |
-
logger.info(f"Starting reasoning round {round_num}/{max_round}")
|
| 191 |
-
|
| 192 |
-
# Generate next step
|
| 193 |
-
inputs = self.tokenizer.apply_chat_template(
|
| 194 |
-
conversation,
|
| 195 |
-
add_generation_prompt=True,
|
| 196 |
-
return_tensors="pt"
|
| 197 |
-
).to(self.device)
|
| 198 |
-
|
| 199 |
-
generation_config = GenerationConfig(
|
| 200 |
-
max_new_tokens=max_new_tokens,
|
| 201 |
-
temperature=temperature,
|
| 202 |
-
do_sample=True,
|
| 203 |
-
pad_token_id=self.tokenizer.eos_token_id
|
| 204 |
-
)
|
| 205 |
-
|
| 206 |
-
outputs = self.model.generate(
|
| 207 |
-
inputs,
|
| 208 |
-
generation_config=generation_config
|
| 209 |
-
)
|
| 210 |
-
|
| 211 |
-
response = self.tokenizer.decode(outputs[0][inputs.shape[1]:], skip_special_tokens=True)
|
| 212 |
-
|
| 213 |
-
# Check for final answer
|
| 214 |
-
if "[FinalAnswer]" in response:
|
| 215 |
-
final_answer = response.split("[FinalAnswer]")[-1].strip()
|
| 216 |
-
logger.info(f"Final answer found in round {round_num}")
|
| 217 |
-
return final_answer
|
| 218 |
-
|
| 219 |
-
# Add to conversation
|
| 220 |
-
conversation.append({"role": "assistant", "content": response})
|
| 221 |
-
logger.info(f"Round {round_num} completed without final answer")
|
| 222 |
-
|
| 223 |
-
# If max rounds reached
|
| 224 |
-
if self.force_finish:
|
| 225 |
-
logger.info("Max rounds reached, forcing final answer")
|
| 226 |
-
return self._force_final_answer(conversation, temperature, max_new_tokens)
|
| 227 |
-
|
| 228 |
-
logger.warning("Max rounds reached without final answer")
|
| 229 |
-
return "Reasoning rounds exceeded limit without reaching a final answer."
|
| 230 |
-
|
| 231 |
-
except Exception as e:
|
| 232 |
-
logger.error(f"Multi-step agent failed: {str(e)}", exc_info=True)
|
| 233 |
-
raise RuntimeError(f"Multi-step agent failed: {str(e)}")
|
| 234 |
-
|
| 235 |
-
def _force_final_answer(self, conversation: List[Dict], temperature: float, max_new_tokens: int) -> str:
|
| 236 |
-
"""Force a final answer when max rounds reached"""
|
| 237 |
-
try:
|
| 238 |
-
logger.info("Attempting to force final answer")
|
| 239 |
-
|
| 240 |
-
# Add instruction to provide final answer
|
| 241 |
-
conversation.append({
|
| 242 |
-
"role": "user",
|
| 243 |
-
"content": "Provide your final answer now based on all previous reasoning."
|
| 244 |
-
})
|
| 245 |
-
|
| 246 |
-
inputs = self.tokenizer.apply_chat_template(
|
| 247 |
-
conversation,
|
| 248 |
-
add_generation_prompt=True,
|
| 249 |
-
return_tensors="pt"
|
| 250 |
-
).to(self.device)
|
| 251 |
-
|
| 252 |
-
generation_config = GenerationConfig(
|
| 253 |
-
max_new_tokens=max_new_tokens,
|
| 254 |
-
temperature=temperature,
|
| 255 |
-
do_sample=True,
|
| 256 |
-
pad_token_id=self.tokenizer.eos_token_id
|
| 257 |
-
)
|
| 258 |
-
|
| 259 |
-
outputs = self.model.generate(
|
| 260 |
-
inputs,
|
| 261 |
-
generation_config=generation_config
|
| 262 |
-
)
|
| 263 |
-
|
| 264 |
-
response = self.tokenizer.decode(outputs[0][inputs.shape[1]:], skip_special_tokens=True)
|
| 265 |
-
return response.strip()
|
| 266 |
-
|
| 267 |
-
except Exception as e:
|
| 268 |
-
logger.error(f"Failed to force final answer: {str(e)}", exc_info=True)
|
| 269 |
-
return "Failed to generate final answer."
|
| 270 |
-
|
| 271 |
-
def extract_text_from_file(self, file_path: str) -> Optional[str]:
|
| 272 |
-
"""Extract text from PDF, CSV, or Excel files"""
|
| 273 |
-
try:
|
| 274 |
-
logger.info(f"Extracting text from file: {file_path}")
|
| 275 |
-
|
| 276 |
-
if file_path.endswith('.pdf'):
|
| 277 |
-
with pdfplumber.open(file_path) as pdf:
|
| 278 |
-
text = "\n".join(
|
| 279 |
-
page.extract_text()
|
| 280 |
-
for page in pdf.pages
|
| 281 |
-
if page.extract_text()
|
| 282 |
-
)
|
| 283 |
-
logger.info(f"Extracted {len(text)} characters from PDF")
|
| 284 |
-
return text
|
| 285 |
-
|
| 286 |
-
elif file_path.endswith('.csv'):
|
| 287 |
-
df = pd.read_csv(file_path)
|
| 288 |
-
text = df.to_string()
|
| 289 |
-
logger.info(f"Extracted {len(text)} characters from CSV")
|
| 290 |
-
return text
|
| 291 |
-
|
| 292 |
-
elif file_path.endswith(('.xlsx', '.xls')):
|
| 293 |
-
df = pd.read_excel(file_path)
|
| 294 |
-
text = df.to_string()
|
| 295 |
-
logger.info(f"Extracted {len(text)} characters from Excel")
|
| 296 |
-
return text
|
| 297 |
-
|
| 298 |
-
logger.warning(f"Unsupported file type: {file_path}")
|
| 299 |
-
return None
|
| 300 |
-
|
| 301 |
-
except Exception as e:
|
| 302 |
-
logger.error(f"Text extraction failed: {str(e)}", exc_info=True)
|
| 303 |
-
raise RuntimeError(f"Text extraction failed: {str(e)}")
|
| 304 |
-
|
| 305 |
-
def analyze_text(self, text: str, max_tokens: int = 1000) -> str:
|
| 306 |
-
"""Analyze extracted text using the LLM"""
|
| 307 |
-
try:
|
| 308 |
-
logger.info(f"Analyzing text (first 100 chars): {text[:100]}...")
|
| 309 |
-
|
| 310 |
-
prompt = f"""Analyze this medical document:
|
| 311 |
-
1. Diagnostic patterns
|
| 312 |
-
2. Medication issues
|
| 313 |
-
3. Recommended follow-ups
|
| 314 |
-
|
| 315 |
-
Document:
|
| 316 |
-
{text[:8000]} # Truncate to avoid token limits
|
| 317 |
-
"""
|
| 318 |
-
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.device)
|
| 319 |
-
|
| 320 |
-
generation_config = GenerationConfig(
|
| 321 |
-
max_new_tokens=max_tokens,
|
| 322 |
-
temperature=0.7,
|
| 323 |
-
do_sample=True,
|
| 324 |
-
pad_token_id=self.tokenizer.eos_token_id
|
| 325 |
-
)
|
| 326 |
-
|
| 327 |
-
outputs = self.model.generate(
|
| 328 |
-
**inputs,
|
| 329 |
-
generation_config=generation_config
|
| 330 |
-
)
|
| 331 |
-
|
| 332 |
-
analysis = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 333 |
-
logger.info("Text analysis completed successfully")
|
| 334 |
-
return analysis
|
| 335 |
-
|
| 336 |
-
except Exception as e:
|
| 337 |
-
logger.error(f"Text analysis failed: {str(e)}", exc_info=True)
|
| 338 |
-
raise RuntimeError(f"Analysis failed: {str(e)}")
|
| 339 |
-
|
| 340 |
def cleanup(self):
|
| 341 |
"""Clean up resources"""
|
| 342 |
try:
|
| 343 |
-
logger.info("Cleaning up TxAgent resources")
|
| 344 |
if hasattr(self, 'model'):
|
| 345 |
del self.model
|
| 346 |
if hasattr(self, 'rag_model'):
|
| 347 |
del self.rag_model
|
| 348 |
torch.cuda.empty_cache()
|
| 349 |
-
logger.info("
|
| 350 |
except Exception as e:
|
| 351 |
-
logger.error(f"Cleanup failed: {str(e)}"
|
| 352 |
raise
|
| 353 |
|
| 354 |
def __del__(self):
|
|
|
|
| 1 |
import os
|
| 2 |
import logging
|
| 3 |
import torch
|
|
|
|
|
|
|
| 4 |
from typing import Dict, Optional, List, Union
|
| 5 |
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
|
| 6 |
from sentence_transformers import SentenceTransformer
|
|
|
|
|
|
|
| 7 |
|
| 8 |
+
# Configure logging for Hugging Face Spaces
|
| 9 |
logging.basicConfig(
|
| 10 |
level=logging.INFO,
|
| 11 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
)
|
| 13 |
logger = logging.getLogger("TxAgent")
|
| 14 |
|
|
|
|
| 19 |
tool_files_dict: Optional[Dict] = None,
|
| 20 |
enable_finish: bool = True,
|
| 21 |
enable_rag: bool = False,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
force_finish: bool = True,
|
| 23 |
+
enable_checker: bool = True,
|
| 24 |
+
step_rag_num: int = 4,
|
| 25 |
+
seed: Optional[int] = None):
|
|
|
|
|
|
|
| 26 |
|
| 27 |
# Initialization parameters
|
| 28 |
self.model_name = model_name
|
|
|
|
| 30 |
self.tool_files_dict = tool_files_dict or {}
|
| 31 |
self.enable_finish = enable_finish
|
| 32 |
self.enable_rag = enable_rag
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
self.force_finish = force_finish
|
|
|
|
|
|
|
| 34 |
self.enable_checker = enable_checker
|
| 35 |
+
self.step_rag_num = step_rag_num
|
| 36 |
+
self.seed = seed
|
| 37 |
|
| 38 |
# Device setup
|
| 39 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
| 42 |
self.model = None
|
| 43 |
self.tokenizer = None
|
| 44 |
self.rag_model = None
|
|
|
|
| 45 |
|
| 46 |
# Prompts
|
|
|
|
|
|
|
| 47 |
self.chat_prompt = "You are a helpful assistant for user chat."
|
| 48 |
|
| 49 |
+
logger.info(f"Initialized TxAgent with model: {model_name}")
|
| 50 |
|
| 51 |
def init_model(self):
|
| 52 |
"""Initialize all models and components"""
|
| 53 |
try:
|
| 54 |
self.load_llm_model()
|
| 55 |
+
if self.enable_rag:
|
| 56 |
+
self.load_rag_model()
|
| 57 |
+
logger.info("Models initialized successfully")
|
| 58 |
except Exception as e:
|
| 59 |
+
logger.error(f"Model initialization failed: {str(e)}")
|
| 60 |
raise
|
| 61 |
|
| 62 |
def load_llm_model(self):
|
|
|
|
| 65 |
logger.info(f"Loading LLM model: {self.model_name}")
|
| 66 |
self.tokenizer = AutoTokenizer.from_pretrained(
|
| 67 |
self.model_name,
|
|
|
|
| 68 |
trust_remote_code=True
|
| 69 |
)
|
| 70 |
|
|
|
|
| 72 |
self.model_name,
|
| 73 |
torch_dtype=torch.float16 if self.device.type == "cuda" else torch.float32,
|
| 74 |
device_map="auto",
|
|
|
|
| 75 |
trust_remote_code=True
|
| 76 |
)
|
| 77 |
logger.info(f"LLM model loaded on {self.device}")
|
| 78 |
except Exception as e:
|
| 79 |
+
logger.error(f"Failed to load LLM model: {str(e)}")
|
| 80 |
raise
|
| 81 |
|
| 82 |
def load_rag_model(self):
|
| 83 |
"""Load the RAG model"""
|
| 84 |
try:
|
| 85 |
logger.info(f"Loading RAG model: {self.rag_model_name}")
|
| 86 |
+
self.rag_model = SentenceTransformer(
|
| 87 |
+
self.rag_model_name,
|
| 88 |
+
device=str(self.device)
|
| 89 |
+
)
|
| 90 |
logger.info("RAG model loaded successfully")
|
| 91 |
except Exception as e:
|
| 92 |
+
logger.error(f"Failed to load RAG model: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
raise
|
| 94 |
|
| 95 |
def chat(self, message: str, history: Optional[List[Dict]] = None,
|
|
|
|
| 133 |
return response.strip()
|
| 134 |
|
| 135 |
except Exception as e:
|
| 136 |
+
logger.error(f"Chat failed: {str(e)}")
|
| 137 |
raise RuntimeError(f"Chat failed: {str(e)}")
|
| 138 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 139 |
def cleanup(self):
|
| 140 |
"""Clean up resources"""
|
| 141 |
try:
|
|
|
|
| 142 |
if hasattr(self, 'model'):
|
| 143 |
del self.model
|
| 144 |
if hasattr(self, 'rag_model'):
|
| 145 |
del self.rag_model
|
| 146 |
torch.cuda.empty_cache()
|
| 147 |
+
logger.info("Resources cleaned up")
|
| 148 |
except Exception as e:
|
| 149 |
+
logger.error(f"Cleanup failed: {str(e)}")
|
| 150 |
raise
|
| 151 |
|
| 152 |
def __del__(self):
|