Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,233 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import io
|
| 3 |
+
import re
|
| 4 |
+
from typing import List, Tuple
|
| 5 |
+
|
| 6 |
+
import streamlit as st
|
| 7 |
+
from transformers import pipeline
|
| 8 |
+
import PyPDF2
|
| 9 |
+
import nltk
|
| 10 |
+
|
| 11 |
+
@st.cache_resource
|
| 12 |
+
def download_nltk():
|
| 13 |
+
nltk.download("punkt", quiet=True)
|
| 14 |
+
|
| 15 |
+
download_nltk()
|
| 16 |
+
|
| 17 |
+
with st.sidebar:
|
| 18 |
+
st.image(
|
| 19 |
+
"https://raw.githubusercontent.com/Runtimepirate/About_me/main/Profile_pic.jpg",
|
| 20 |
+
width=200,
|
| 21 |
+
)
|
| 22 |
+
st.markdown(
|
| 23 |
+
"## **Mr. Aditya Katariya [[Resume](https://drive.google.com/file/d/1Vq9-H1dl5Kky2ugXPIbnPvJ72EEkTROY/view?usp=drive_link)]**"
|
| 24 |
+
)
|
| 25 |
+
st.markdown(" *College - Noida Institute of Engineering and Technology, U.P*")
|
| 26 |
+
st.markdown("----")
|
| 27 |
+
st.markdown("## Contact Details:-")
|
| 28 |
+
st.markdown("📫 *[Prasaritation@gmail.com](mailto:Prasaritation@gmail.com)*")
|
| 29 |
+
st.markdown("💼 *[LinkedIn](https://www.linkedin.com/in/adityakatariya/)*")
|
| 30 |
+
st.markdown("💻 *[GitHub](https://github.com/Runtimepirate)*")
|
| 31 |
+
st.markdown("----")
|
| 32 |
+
st.markdown("**AI & ML Enthusiast**")
|
| 33 |
+
st.markdown(
|
| 34 |
+
"Passionate about solving real-world problems using data science and customer analytics. Always learning and building smart, scalable AI solutions."
|
| 35 |
+
)
|
| 36 |
+
st.markdown("----")
|
| 37 |
+
mode = st.radio("Choose Mode:", ["Ask Anything", "Challenge Me"], key="mode")
|
| 38 |
+
|
| 39 |
+
st.title("📚 Document‑Aware Assistant")
|
| 40 |
+
|
| 41 |
+
st.markdown(
|
| 42 |
+
"""
|
| 43 |
+
This assistant **reads your uploaded PDF or TXT document**, produces a *≤150‑word* summary, answers your questions with paragraph‑level justification, **generates logic‑based questions**, and evaluates your responses.
|
| 44 |
+
"""
|
| 45 |
+
)
|
| 46 |
+
|
| 47 |
+
@st.cache_resource(show_spinner=True)
|
| 48 |
+
def load_models():
|
| 49 |
+
"""Load all required Hugging Face pipelines once and reuse."""
|
| 50 |
+
summarizer = pipeline(
|
| 51 |
+
"summarization",
|
| 52 |
+
model="facebook/bart-large-cnn",
|
| 53 |
+
device_map="auto",
|
| 54 |
+
)
|
| 55 |
+
qa = pipeline(
|
| 56 |
+
"question-answering",
|
| 57 |
+
model="deepset/roberta-base-squad2",
|
| 58 |
+
device_map="auto",
|
| 59 |
+
)
|
| 60 |
+
qg = pipeline(
|
| 61 |
+
"text2text-generation",
|
| 62 |
+
model="valhalla/t5-small-qg-hl",
|
| 63 |
+
device_map="auto",
|
| 64 |
+
max_length=64,
|
| 65 |
+
)
|
| 66 |
+
return summarizer, qa, qg
|
| 67 |
+
|
| 68 |
+
summarizer, qa_pipeline, qg_pipeline = load_models()
|
| 69 |
+
|
| 70 |
+
def extract_text_from_pdf(uploaded_file: io.BytesIO) -> str:
|
| 71 |
+
reader = PyPDF2.PdfReader(uploaded_file)
|
| 72 |
+
text = ""
|
| 73 |
+
for page in reader.pages:
|
| 74 |
+
page_text = page.extract_text()
|
| 75 |
+
if page_text:
|
| 76 |
+
text += page_text + "\n"
|
| 77 |
+
return text
|
| 78 |
+
|
| 79 |
+
def extract_text(uploaded_file) -> str:
|
| 80 |
+
if uploaded_file.name.lower().endswith(".pdf"):
|
| 81 |
+
return extract_text_from_pdf(uploaded_file)
|
| 82 |
+
elif uploaded_file.name.lower().endswith(".txt"):
|
| 83 |
+
return uploaded_file.read().decode("utf-8", errors="ignore")
|
| 84 |
+
return ""
|
| 85 |
+
|
| 86 |
+
def chunk_text(text: str, max_tokens: int = 450) -> List[str]:
|
| 87 |
+
"""Split text into roughly max_tokens‑sized chunks using sentences."""
|
| 88 |
+
sentences = nltk.sent_tokenize(text)
|
| 89 |
+
chunks: List[str] = []
|
| 90 |
+
current: List[str] = []
|
| 91 |
+
token_count = 0
|
| 92 |
+
|
| 93 |
+
for sent in sentences:
|
| 94 |
+
num_tokens = len(sent.split())
|
| 95 |
+
if token_count + num_tokens > max_tokens and current:
|
| 96 |
+
chunks.append(" ".join(current))
|
| 97 |
+
current = []
|
| 98 |
+
token_count = 0
|
| 99 |
+
current.append(sent)
|
| 100 |
+
token_count += num_tokens
|
| 101 |
+
if current:
|
| 102 |
+
chunks.append(" ".join(current))
|
| 103 |
+
return chunks
|
| 104 |
+
|
| 105 |
+
def get_best_answer(question: str, chunks: List[str]) -> Tuple[str, int, int, float, str]:
|
| 106 |
+
"""Run QA over chunks, return best answer with its score and context chunk."""
|
| 107 |
+
best = {"score": -float("inf")}
|
| 108 |
+
for chunk in chunks:
|
| 109 |
+
try:
|
| 110 |
+
answer = qa_pipeline(question=question, context=chunk)
|
| 111 |
+
if answer["score"] > best["score"] and answer["answer"].strip():
|
| 112 |
+
best = {
|
| 113 |
+
"answer": answer["answer"],
|
| 114 |
+
"score": answer["score"],
|
| 115 |
+
"start": answer["start"],
|
| 116 |
+
"end": answer["end"],
|
| 117 |
+
"context": chunk,
|
| 118 |
+
}
|
| 119 |
+
except Exception:
|
| 120 |
+
continue
|
| 121 |
+
if best["score"] == -float("inf"):
|
| 122 |
+
return "", 0, 0, 0.0, ""
|
| 123 |
+
return (
|
| 124 |
+
best["answer"],
|
| 125 |
+
best["start"],
|
| 126 |
+
best["end"],
|
| 127 |
+
best["score"],
|
| 128 |
+
best["context"],
|
| 129 |
+
)
|
| 130 |
+
|
| 131 |
+
def highlight_answer(context: str, start: int, end: int) -> str:
|
| 132 |
+
"""Return context with the answer wrapped in **bold** for display."""
|
| 133 |
+
return (
|
| 134 |
+
context[:start]
|
| 135 |
+
+ " **"
|
| 136 |
+
+ context[start:end]
|
| 137 |
+
+ "** "
|
| 138 |
+
+ context[end:]
|
| 139 |
+
)
|
| 140 |
+
|
| 141 |
+
def generate_logic_questions(text: str, num_q: int = 3) -> List[str]:
|
| 142 |
+
"""Generate num_q questions from the document using QG pipeline."""
|
| 143 |
+
sentences = nltk.sent_tokenize(text)
|
| 144 |
+
questions: List[str] = []
|
| 145 |
+
for sent in sentences:
|
| 146 |
+
if len(questions) >= num_q:
|
| 147 |
+
break
|
| 148 |
+
hl_text = f"<hl> {sent} <hl> "
|
| 149 |
+
try:
|
| 150 |
+
q = qg_pipeline(hl_text, do_sample=False, max_length=64)[0]["generated_text"]
|
| 151 |
+
q = q.strip().rstrip("?.!") + "?"
|
| 152 |
+
if q not in questions:
|
| 153 |
+
questions.append(q)
|
| 154 |
+
except Exception:
|
| 155 |
+
continue
|
| 156 |
+
default_q = [
|
| 157 |
+
"What is the main topic of the document?",
|
| 158 |
+
"Summarize the methodology described.",
|
| 159 |
+
"What are the key findings or conclusions?",
|
| 160 |
+
]
|
| 161 |
+
while len(questions) < num_q:
|
| 162 |
+
questions.append(default_q[len(questions)])
|
| 163 |
+
return questions
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
| 168 |
+
uploaded = st.file_uploader("Upload PDF or TXT Document", type=["pdf", "txt"], key="uploader")
|
| 169 |
+
|
| 170 |
+
if uploaded:
|
| 171 |
+
doc_text = extract_text(uploaded)
|
| 172 |
+
st.session_state["doc_text"] = doc_text
|
| 173 |
+
|
| 174 |
+
st.subheader("🔎 Auto Summary (≤ 150 words)")
|
| 175 |
+
try:
|
| 176 |
+
summary = summarizer(
|
| 177 |
+
doc_text[:4096],
|
| 178 |
+
max_length=150,
|
| 179 |
+
min_length=30,
|
| 180 |
+
do_sample=False,
|
| 181 |
+
)[0]["summary_text"]
|
| 182 |
+
st.write(summary)
|
| 183 |
+
except Exception as e:
|
| 184 |
+
st.error(f"Summarization failed: {e}")
|
| 185 |
+
|
| 186 |
+
if "chunks" not in st.session_state:
|
| 187 |
+
st.session_state["chunks"] = chunk_text(doc_text)
|
| 188 |
+
|
| 189 |
+
if mode == "Ask Anything":
|
| 190 |
+
st.subheader("💬 Ask Anything")
|
| 191 |
+
question = st.text_input("Ask a question about the document:", key="user_question")
|
| 192 |
+
if st.button("Submit Question", key="submit_question") and question:
|
| 193 |
+
with st.spinner("Finding answer..."):
|
| 194 |
+
ans, start, end, score, context = get_best_answer(
|
| 195 |
+
question, st.session_state["chunks"]
|
| 196 |
+
)
|
| 197 |
+
if ans:
|
| 198 |
+
st.markdown(f"**Answer:** {ans}")
|
| 199 |
+
justification = highlight_answer(context, start, end)
|
| 200 |
+
st.caption(f"Justification: …{justification[:300]}…")
|
| 201 |
+
st.caption(
|
| 202 |
+
f"Confidence Score: {score:.3f} | Paragraph tokens: {len(context.split())}"
|
| 203 |
+
)
|
| 204 |
+
else:
|
| 205 |
+
st.warning("Sorry, I couldn't find an answer in the document.")
|
| 206 |
+
|
| 207 |
+
elif mode == "Challenge Me":
|
| 208 |
+
st.subheader("🎯 Challenge Me")
|
| 209 |
+
if "logic_questions" not in st.session_state:
|
| 210 |
+
st.session_state["logic_questions"] = generate_logic_questions(doc_text)
|
| 211 |
+
st.session_state["user_answers"] = ["" for _ in st.session_state["logic_questions"]]
|
| 212 |
+
|
| 213 |
+
for idx, q in enumerate(st.session_state["logic_questions"]):
|
| 214 |
+
st.text_input(f"Q{idx+1}: {q}", key=f"logic_q_{idx}")
|
| 215 |
+
|
| 216 |
+
if st.button("Submit Answers", key="submit_logic"):
|
| 217 |
+
st.markdown("----")
|
| 218 |
+
for idx, q in enumerate(st.session_state["logic_questions"]):
|
| 219 |
+
user_ans = st.session_state.get(f"logic_q_{idx}", "").strip()
|
| 220 |
+
correct, start, end, score, context = get_best_answer(
|
| 221 |
+
q, st.session_state["chunks"]
|
| 222 |
+
)
|
| 223 |
+
st.markdown(f"**Q{idx+1} Evaluation:**")
|
| 224 |
+
st.write(f"*Your Answer*: {user_ans or '—'}")
|
| 225 |
+
st.write(f"*Expected Answer*: {correct or 'Not found in document'}")
|
| 226 |
+
if correct:
|
| 227 |
+
justification = highlight_answer(context, start, end)
|
| 228 |
+
st.caption(f"Justification: …{justification[:300]}…")
|
| 229 |
+
st.caption(f"Confidence Score: {score:.3f}")
|
| 230 |
+
st.markdown("----")
|
| 231 |
+
|
| 232 |
+
else:
|
| 233 |
+
st.info("Please upload a PDF or TXT document to begin.")
|