|
|
import numpy as np |
|
|
import json |
|
|
import os |
|
|
|
|
|
|
|
|
c = 299792458 |
|
|
E_mc2 = c**2 |
|
|
dark_energy_density = 5.96e-27 |
|
|
collision_distance = 1e-10 |
|
|
|
|
|
|
|
|
temperature_initial = 1.42e32 |
|
|
particle_speed_initial = c |
|
|
|
|
|
|
|
|
t_planck = 5.39e-44 |
|
|
t_simulation = t_planck * 1e5 |
|
|
|
|
|
|
|
|
quark_masses = { |
|
|
"up": 2.3e-3, |
|
|
"down": 4.8e-3, |
|
|
"charm": 1.28, |
|
|
"strange": 0.095, |
|
|
"top": 173.0, |
|
|
"bottom": 4.18, |
|
|
"electron": 5.11e-4, |
|
|
"muon": 1.05e-1, |
|
|
"tau": 1.78, |
|
|
"photon": 0, |
|
|
} |
|
|
|
|
|
|
|
|
GeV_to_J = 1.60217662e-10 |
|
|
|
|
|
|
|
|
num_steps = int(t_simulation / t_planck) |
|
|
|
|
|
|
|
|
data_dir = "big_bang_simulation_data" |
|
|
os.makedirs(data_dir, exist_ok=True) |
|
|
|
|
|
|
|
|
def relativistic_momentum(particle_speed, particle_mass): |
|
|
if particle_speed >= c: |
|
|
return np.inf |
|
|
return ( |
|
|
particle_mass |
|
|
* particle_speed |
|
|
/ np.sqrt(max(1e-10, 1 - (particle_speed / c) ** 2)) |
|
|
) |
|
|
|
|
|
def update_speed(current_speed, current_temperature, particle_mass): |
|
|
|
|
|
return current_speed |
|
|
|
|
|
def check_collision(particle_speeds, collision_distance): |
|
|
for j in range(len(particle_speeds)): |
|
|
for k in range(j + 1, len(particle_speeds)): |
|
|
if np.abs(particle_speeds[j] - particle_speeds[k]) < collision_distance: |
|
|
return True, j, k |
|
|
return False, -1, -1 |
|
|
|
|
|
def handle_collision(particle_speeds, idx1, idx2): |
|
|
|
|
|
p1 = relativistic_momentum(particle_speeds[idx1], particle_masses[idx1]) |
|
|
p2 = relativistic_momentum(particle_speeds[idx2], particle_masses[idx2]) |
|
|
|
|
|
|
|
|
particle_speeds[idx1] = p2 / particle_masses[idx1] |
|
|
particle_speeds[idx2] = p1 / particle_masses[idx2] |
|
|
|
|
|
|
|
|
for tunneling_probability in np.arange(0.01, 2.5, 0.1): |
|
|
print(f"Simulating for tunneling probability: {tunneling_probability}") |
|
|
|
|
|
|
|
|
particle_speeds = np.zeros((len(quark_masses), num_steps)) |
|
|
particle_temperatures = np.zeros((len(quark_masses), num_steps)) |
|
|
np.zeros((len(quark_masses), num_steps)) |
|
|
particle_masses_evolution = np.zeros((len(quark_masses), num_steps)) |
|
|
tunneling_steps = np.zeros((len(quark_masses), num_steps), dtype=bool) |
|
|
|
|
|
|
|
|
particle_masses = np.array([mass * GeV_to_J for mass in quark_masses.values()]) |
|
|
|
|
|
for j, (quark, mass) in enumerate(quark_masses.items()): |
|
|
|
|
|
particle_speeds[j, 0] = particle_speed_initial |
|
|
particle_temperatures[j, 0] = temperature_initial |
|
|
particle_masses_evolution[j, 0] = mass * GeV_to_J |
|
|
|
|
|
|
|
|
for step in range(1, num_steps): |
|
|
for j in range(len(quark_masses)): |
|
|
|
|
|
particle_temperatures[j, step] = particle_temperatures[j, step - 1] * 0.99 |
|
|
|
|
|
|
|
|
particle_speeds[j, step] = update_speed( |
|
|
particle_speeds[j, step - 1], |
|
|
particle_temperatures[j, step], |
|
|
particle_masses[j] |
|
|
) |
|
|
|
|
|
|
|
|
collision_detected, idx1, idx2 = check_collision(particle_speeds[:, step], collision_distance) |
|
|
if collision_detected: |
|
|
handle_collision(particle_speeds[:, step], idx1, idx2) |
|
|
|
|
|
|
|
|
if np.random.rand() < tunneling_probability: |
|
|
tunneling_steps[j, step] = True |
|
|
|
|
|
particle_masses[j] *= 1.1 |
|
|
|
|
|
|
|
|
particle_masses_evolution[:, step] = particle_masses |
|
|
|
|
|
|
|
|
simulation_data = { |
|
|
"particle_speeds": particle_speeds.tolist(), |
|
|
"particle_temperatures": particle_temperatures.tolist(), |
|
|
"particle_masses_evolution": particle_masses_evolution.tolist(), |
|
|
"tunneling_steps": tunneling_steps.tolist(), |
|
|
} |
|
|
|
|
|
with open(os.path.join(data_dir, f"simulation_tunneling_{tunneling_probability:.2f}.json"), "w") as f: |
|
|
json.dump(simulation_data, f) |
|
|
|
|
|
print("Simulation completed and data saved.") |
|
|
|
|
|
|