# -*- coding: utf-8 -*- """Untitled4.ipynb Automatically generated by Colab. Original file is located at https://colab.research.google.com/drive/1352Z_3Tsa5_YFTfI-jWhZpSJ_k4yHSm3 """ # pip install gradio transformers torch # !pip install gTTS import gradio as gr from transformers import pipeline, TextGenerationPipeline, AutoModelForCausalLM, AutoTokenizer from transformers import AutoTokenizer, AutoModelForCausalLM, TextGenerationPipeline import torch from gtts import gTTS import tempfile sentiment_pipeline = pipeline("sentiment-analysis") summarizer_pipeline = pipeline("summarization") # Sentiment Analysis def analyze_sentiment(text): result = sentiment_pipeline(text)[0] return result["label"], round(result["score"], 3) # Summarization def summarize(text): summary = summarizer_pipeline(text, max_length=60, min_length=15, do_sample=False) return summary[0]["summary_text"] def text_to_speech(text): tts = gTTS(text) with tempfile.NamedTemporaryFile(suffix=".mp3", delete=False) as fp: tts.save(fp.name) return fp.name # Gradio UI with gr.Blocks(title="TrailTrek AI Assistant",theme="soft") as demo: gr.Markdown("## 🧠 TrailTrek Gears Co - Multi-Task AI Demo") with gr.Tab("📊 Sentiment Analysis"): with gr.Row(): text_input = gr.Textbox(label="Enter text") sentiment_output = gr.Text(label="Sentiment") confidence_output = gr.Number(label="Confidence") analyze_btn = gr.Button("Analyze") analyze_btn.click(analyze_sentiment, inputs=[text_input], outputs=[sentiment_output, confidence_output]) with gr.Tab("📄 Summarization"): input_text = gr.Textbox(lines=8, label="Enter a long text") output_summary = gr.Text(label="Summary") summarize_btn = gr.Button("Summarize") summarize_btn.click(summarize, inputs=[input_text], outputs=[output_summary]) with gr.Tab("🗣️ Text-to-Speech"): tts_input = gr.Textbox(label="Enter text to speak") tts_output = gr.Audio(label="Generated Speech", type="filepath") tts_btn = gr.Button("Convert to Speech") tts_btn.click(text_to_speech, inputs=[tts_input], outputs=[tts_output]) demo.launch()