Initialization
Browse files- app.py +164 -0
- requirements.txt +9 -0
app.py
ADDED
|
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
import numpy as np
|
| 3 |
+
import yfinance as yf
|
| 4 |
+
import plotly.express as px
|
| 5 |
+
import plotly.graph_objects as go
|
| 6 |
+
|
| 7 |
+
from sklearn.preprocessing import MinMaxScaler
|
| 8 |
+
from tensorflow.keras.models import Sequential
|
| 9 |
+
from tensorflow.keras.layers import Activation, Dense, Dropout, LSTM
|
| 10 |
+
from datetime import date, datetime, timedelta
|
| 11 |
+
from stocknews import StockNews
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
# --- SIDEBAR CODE
|
| 16 |
+
ticker = st.sidebar.selectbox('Select your Crypto', ["BTC-USD", "ETH-USD"])
|
| 17 |
+
|
| 18 |
+
start_date = st.sidebar.date_input('Start Date', date.today() - timedelta(days=365))
|
| 19 |
+
end_date = st.sidebar.date_input('End Date')
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
# --- MAIN PAGE
|
| 23 |
+
st.header('Omdena Bahrain - Cryptocurrency Prediction')
|
| 24 |
+
|
| 25 |
+
col1, col2, = st.columns([1,9])
|
| 26 |
+
with col1:
|
| 27 |
+
st.image('icons/'+ ticker +'.png', width=75)
|
| 28 |
+
with col2:
|
| 29 |
+
st.write(f" ## { ticker}")
|
| 30 |
+
|
| 31 |
+
ticker_obj = yf.Ticker(ticker)
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
# --- CODE
|
| 35 |
+
|
| 36 |
+
model_data = ticker_obj.history(interval='1h', start=start_date, end=end_date)
|
| 37 |
+
|
| 38 |
+
# Extract the 'close' column for prediction
|
| 39 |
+
target_data = model_data["Close"].values.reshape(-1, 1)
|
| 40 |
+
|
| 41 |
+
# Normalize the target data
|
| 42 |
+
scaler = MinMaxScaler()
|
| 43 |
+
target_data_normalized = scaler.fit_transform(target_data)
|
| 44 |
+
|
| 45 |
+
# Normalize the input features
|
| 46 |
+
input_features = ['Open', 'High', 'Low', 'Volume']
|
| 47 |
+
input_data = model_data[input_features].values
|
| 48 |
+
input_data_normalized = scaler.fit_transform(input_data)
|
| 49 |
+
|
| 50 |
+
def build_lstm_model(input_data, output_size, neurons, activ_func='linear', dropout=0.2, loss='mse', optimizer='adam'):
|
| 51 |
+
model = Sequential()
|
| 52 |
+
model.add(LSTM(neurons, input_shape=(input_data.shape[1], input_data.shape[2])))
|
| 53 |
+
model.add(Dropout(dropout))
|
| 54 |
+
model.add(Dense(units=output_size))
|
| 55 |
+
model.add(Activation(activ_func))
|
| 56 |
+
|
| 57 |
+
model.compile(loss=loss, optimizer=optimizer)
|
| 58 |
+
|
| 59 |
+
return model
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
# Hyperparameters
|
| 63 |
+
np.random.seed(245)
|
| 64 |
+
window_len = 10
|
| 65 |
+
split_ratio = 0.8 # Ratio of training set to total data
|
| 66 |
+
zero_base = True
|
| 67 |
+
lstm_neurons = 50
|
| 68 |
+
epochs = 100
|
| 69 |
+
batch_size = 128 #32
|
| 70 |
+
loss = 'mean_squared_error'
|
| 71 |
+
dropout = 0.24
|
| 72 |
+
optimizer = 'adam'
|
| 73 |
+
|
| 74 |
+
def extract_window_data(input_data, target_data, window_len):
|
| 75 |
+
X = []
|
| 76 |
+
y = []
|
| 77 |
+
for i in range(len(input_data) - window_len):
|
| 78 |
+
X.append(input_data[i : i + window_len])
|
| 79 |
+
y.append(target_data[i + window_len])
|
| 80 |
+
return np.array(X), np.array(y)
|
| 81 |
+
|
| 82 |
+
X, y = extract_window_data(input_data_normalized, target_data_normalized, window_len)
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
# Split the data into training and testing sets
|
| 86 |
+
split_ratio = 0.8 # Ratio of training set to total data
|
| 87 |
+
split_index = int(split_ratio * len(X))
|
| 88 |
+
|
| 89 |
+
X_train, X_test = X[:split_index], X[split_index:]
|
| 90 |
+
y_train, y_test = y[:split_index], y[split_index:]
|
| 91 |
+
|
| 92 |
+
# Creating model
|
| 93 |
+
model = build_lstm_model(X_train, output_size=1, neurons=lstm_neurons, dropout=dropout, loss=loss, optimizer=optimizer)
|
| 94 |
+
|
| 95 |
+
# Saved Weights
|
| 96 |
+
file_path = "models/LSTM_" + ticker + "_weights.h5"
|
| 97 |
+
|
| 98 |
+
# Loads the weights
|
| 99 |
+
model.load_weights(file_path)
|
| 100 |
+
|
| 101 |
+
# Step 4: Make predictions
|
| 102 |
+
preds = model.predict(X_test)
|
| 103 |
+
y_test = y[split_index:]
|
| 104 |
+
|
| 105 |
+
# Normalize the target data
|
| 106 |
+
scaler = MinMaxScaler()
|
| 107 |
+
target_data_normalized = scaler.fit_transform(target_data)
|
| 108 |
+
|
| 109 |
+
# Inverse normalize the predictions
|
| 110 |
+
preds = preds.reshape(-1, 1)
|
| 111 |
+
y_test = y_test.reshape(-1, 1)
|
| 112 |
+
preds = scaler.inverse_transform(preds)
|
| 113 |
+
y_test = scaler.inverse_transform(y_test)
|
| 114 |
+
|
| 115 |
+
fig = px.line(x=model_data.index[-len(y_test):],
|
| 116 |
+
y=[y_test.flatten(), preds.flatten()])
|
| 117 |
+
newnames = {'wide_variable_0':'Real Values', 'wide_variable_1': 'Predictions'}
|
| 118 |
+
fig.for_each_trace(lambda t: t.update(name = newnames[t.name],
|
| 119 |
+
legendgroup = newnames[t.name],
|
| 120 |
+
hovertemplate = t.hovertemplate.replace(t.name, newnames[t.name])))
|
| 121 |
+
fig.update_layout(
|
| 122 |
+
xaxis_title="Date",
|
| 123 |
+
yaxis_title=ticker+" Price",
|
| 124 |
+
legend_title=" ")
|
| 125 |
+
st.write(fig)
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
# --- INFO BUBBLE
|
| 129 |
+
|
| 130 |
+
about_data, news = st.tabs(["About", "News"])
|
| 131 |
+
|
| 132 |
+
with about_data:
|
| 133 |
+
# Candlestick
|
| 134 |
+
raw_data = ticker_obj.history(start=start_date, end=end_date)
|
| 135 |
+
fig = go.Figure(data=[go.Candlestick(x=raw_data.index,
|
| 136 |
+
open=raw_data['Open'],
|
| 137 |
+
high=raw_data['High'],
|
| 138 |
+
low=raw_data['Low'],
|
| 139 |
+
close=raw_data['Close'])])
|
| 140 |
+
fig.update_layout(
|
| 141 |
+
title=ticker + " candlestick : Open, High, Low and Close",
|
| 142 |
+
yaxis_title=ticker + ' Price')
|
| 143 |
+
st.plotly_chart(fig)
|
| 144 |
+
|
| 145 |
+
# Table
|
| 146 |
+
history_data = raw_data.copy()
|
| 147 |
+
|
| 148 |
+
# Formating index Date
|
| 149 |
+
history_data.index = pd.to_datetime(history_data.index, format='%Y-%m-%d %H:%M:%S').date
|
| 150 |
+
history_data.index.name = "Date"
|
| 151 |
+
history_data.sort_values(by='Date', ascending=False, inplace=True)
|
| 152 |
+
st.write(history_data)
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
with news:
|
| 156 |
+
sNews = StockNews(ticker, save_news=False)
|
| 157 |
+
sNews_df = sNews.read_rss()
|
| 158 |
+
|
| 159 |
+
# Showing most recent news
|
| 160 |
+
for i in range(10):
|
| 161 |
+
st.subheader(f"{i+1} - {sNews_df['title'][i]}")
|
| 162 |
+
st.write(sNews_df['summary'][i])
|
| 163 |
+
date_object = datetime.strptime(sNews_df['published'][i], '%a, %d %b %Y %H:%M:%S %z')
|
| 164 |
+
st.write(f"_{date_object.strftime('%A')}, {date_object.date()}_")
|
requirements.txt
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
datetime==4.0.1
|
| 2 |
+
numpy==1.22.4
|
| 3 |
+
pandas==1.5.3
|
| 4 |
+
plotly==5.13.1
|
| 5 |
+
sklearn-pandas==2.2.0
|
| 6 |
+
stocknews==0.9.11
|
| 7 |
+
streamlit==1.24.1
|
| 8 |
+
tensorflow==2.12.0
|
| 9 |
+
yfinance==0.2.24
|