Spaces:
Running
Running
small-changes
#4
pinned
by
takarajordan
- opened
- .gitignore +2 -0
- app.py +75 -91
- content/index.md +53 -0
- requirements.txt +3 -2
.gitignore
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
.DS_Store
|
| 2 |
+
.venv/*
|
app.py
CHANGED
|
@@ -5,87 +5,76 @@ import os
|
|
| 5 |
import base64
|
| 6 |
import spaces
|
| 7 |
import io
|
| 8 |
-
import tempfile
|
| 9 |
from PIL import Image
|
| 10 |
-
import
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
- Math/molecular formulas
|
| 29 |
-
- Tables
|
| 30 |
-
- Charts
|
| 31 |
-
- Sheet music
|
| 32 |
-
- Geometric shapes
|
| 33 |
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
2. Upload an image.
|
| 37 |
-
3. (Optional) Fill in additional parameters based on the task.
|
| 38 |
-
4. Click **Process** to see the results.
|
| 39 |
-
---
|
| 40 |
-
### Join us :
|
| 41 |
-
🌟TeamTonic🌟 is always making cool demos! Join our active builder's 🛠️community 👻 [](https://discord.gg/qdfnvSPcqP) On 🤗Huggingface:[MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Tonic-AI](https://github.com/tonic-ai) & contribute to🌟 [Build Tonic](https://git.tonic-ai.com/contribute)🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗
|
| 42 |
-
"""
|
| 43 |
|
|
|
|
| 44 |
model_name = 'ucaslcl/GOT-OCR2_0'
|
| 45 |
|
| 46 |
-
|
| 47 |
tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True)
|
|
|
|
| 48 |
model = AutoModel.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True, low_cpu_mem_usage=True, device_map='cuda', use_safetensors=True, pad_token_id=tokenizer.eos_token_id)
|
| 49 |
model = model.eval().cuda()
|
| 50 |
model.config.pad_token_id = tokenizer.eos_token_id
|
| 51 |
|
| 52 |
-
def
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
|
| 57 |
@spaces.GPU
|
| 58 |
-
def process_image(image, task, ocr_type=None, ocr_box=None, ocr_color=None):
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
res = model.chat_crop(tokenizer, image_file=temp_image_path)
|
| 75 |
-
elif task == "Render Formatted OCR":
|
| 76 |
-
res = model.chat(tokenizer, temp_image_path, ocr_type='format', render=True, save_render_file='./results/demo.html')
|
| 77 |
-
with open('./results/demo.html', 'r') as f:
|
| 78 |
-
html_content = f.read()
|
| 79 |
-
os.remove(temp_image_path)
|
| 80 |
-
return res, html_content
|
| 81 |
-
|
| 82 |
-
# Clean up
|
| 83 |
-
os.remove(temp_image_path)
|
| 84 |
-
|
| 85 |
-
return res, None
|
| 86 |
-
except Exception as e:
|
| 87 |
-
return str(e), None
|
| 88 |
|
|
|
|
|
|
|
| 89 |
def update_inputs(task):
|
| 90 |
if task == "Plain Text OCR" or task == "Format Text OCR" or task == "Multi-crop OCR":
|
| 91 |
return [gr.update(visible=False)] * 4
|
|
@@ -105,22 +94,25 @@ def update_inputs(task):
|
|
| 105 |
]
|
| 106 |
elif task == "Render Formatted OCR":
|
| 107 |
return [gr.update(visible=False)] * 3 + [gr.update(visible=True)]
|
| 108 |
-
|
| 109 |
|
| 110 |
def ocr_demo(image, task, ocr_type, ocr_box, ocr_color):
|
| 111 |
-
|
| 112 |
-
if
|
| 113 |
-
res, html_content
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
|
| 118 |
with gr.Blocks() as demo:
|
| 119 |
-
gr.Markdown(title)
|
| 120 |
-
gr.Markdown(description)
|
| 121 |
with gr.Row():
|
| 122 |
-
|
| 123 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
task_dropdown = gr.Dropdown(
|
| 125 |
choices=[
|
| 126 |
"Plain Text OCR",
|
|
@@ -153,27 +145,19 @@ with gr.Blocks() as demo:
|
|
| 153 |
visible=False
|
| 154 |
)
|
| 155 |
submit_button = gr.Button("Process")
|
| 156 |
-
|
| 157 |
-
|
| 158 |
output_text = gr.Textbox(label="OCR Result")
|
| 159 |
output_html = gr.HTML(label="Rendered HTML Output")
|
| 160 |
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
This small **330M parameter** model powerful OCR model can handle various text recognition tasks with high accuracy.
|
| 164 |
-
|
| 165 |
-
### Model Information
|
| 166 |
-
- **Model Name**: GOT-OCR 2.0
|
| 167 |
-
- **Hugging Face Repository**: [ucaslcl/GOT-OCR2_0](https://huggingface.co/ucaslcl/GOT-OCR2_0)
|
| 168 |
-
- **Environment**: CUDA 11.8 + PyTorch 2.0.1
|
| 169 |
-
""")
|
| 170 |
-
|
| 171 |
task_dropdown.change(
|
| 172 |
update_inputs,
|
| 173 |
inputs=[task_dropdown],
|
| 174 |
outputs=[ocr_type_dropdown, ocr_box_input, ocr_color_dropdown, render_checkbox]
|
| 175 |
)
|
| 176 |
|
|
|
|
| 177 |
submit_button.click(
|
| 178 |
ocr_demo,
|
| 179 |
inputs=[image_input, task_dropdown, ocr_type_dropdown, ocr_box_input, ocr_color_dropdown],
|
|
@@ -181,4 +165,4 @@ with gr.Blocks() as demo:
|
|
| 181 |
)
|
| 182 |
|
| 183 |
if __name__ == "__main__":
|
| 184 |
-
demo.launch()
|
|
|
|
| 5 |
import base64
|
| 6 |
import spaces
|
| 7 |
import io
|
|
|
|
| 8 |
from PIL import Image
|
| 9 |
+
import numpy as np
|
| 10 |
+
import yaml
|
| 11 |
+
import markdown
|
| 12 |
+
from pathlib import Path
|
| 13 |
+
|
| 14 |
+
# Function to extract title and description from the markdown file
|
| 15 |
+
def extract_title_description(md_file_path):
|
| 16 |
+
with open(md_file_path, 'r') as f:
|
| 17 |
+
lines = f.readlines()
|
| 18 |
+
|
| 19 |
+
# Extract frontmatter (YAML) for title
|
| 20 |
+
frontmatter = []
|
| 21 |
+
content_start = 0
|
| 22 |
+
if lines[0].strip() == '---':
|
| 23 |
+
for idx, line in enumerate(lines[1:], 1):
|
| 24 |
+
if line.strip() == '---':
|
| 25 |
+
content_start = idx + 1
|
| 26 |
+
break
|
| 27 |
+
frontmatter.append(line)
|
| 28 |
+
|
| 29 |
+
frontmatter_yaml = yaml.safe_load(''.join(frontmatter))
|
| 30 |
+
title = frontmatter_yaml.get('title', 'Title Not Found')
|
| 31 |
+
|
| 32 |
+
# Extract content (description)
|
| 33 |
+
description_md = ''.join(lines[content_start:])
|
| 34 |
+
description = markdown.markdown(description_md)
|
| 35 |
+
|
| 36 |
+
return title, description
|
| 37 |
|
| 38 |
+
# Path to the markdown file
|
| 39 |
+
md_file_path = 'content/index.md'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
+
# Extract title and description from the markdown file
|
| 42 |
+
title, description = extract_title_description(md_file_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
+
# Rest of the script continues as before
|
| 45 |
model_name = 'ucaslcl/GOT-OCR2_0'
|
| 46 |
|
|
|
|
| 47 |
tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True)
|
| 48 |
+
config = AutoConfig.from_pretrained(model_name, trust_remote_code=True)
|
| 49 |
model = AutoModel.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True, low_cpu_mem_usage=True, device_map='cuda', use_safetensors=True, pad_token_id=tokenizer.eos_token_id)
|
| 50 |
model = model.eval().cuda()
|
| 51 |
model.config.pad_token_id = tokenizer.eos_token_id
|
| 52 |
|
| 53 |
+
def image_to_base64(image):
|
| 54 |
+
buffered = io.BytesIO()
|
| 55 |
+
image.save(buffered, format="PNG")
|
| 56 |
+
return base64.b64encode(buffered.getvalue()).decode()
|
| 57 |
|
| 58 |
@spaces.GPU
|
| 59 |
+
def process_image(image, task, ocr_type=None, ocr_box=None, ocr_color=None, render=False):
|
| 60 |
+
if task == "Plain Text OCR":
|
| 61 |
+
res = model.chat(tokenizer, image, ocr_type='ocr')
|
| 62 |
+
elif task == "Format Text OCR":
|
| 63 |
+
res = model.chat(tokenizer, image, ocr_type='format')
|
| 64 |
+
elif task == "Fine-grained OCR (Box)":
|
| 65 |
+
res = model.chat(tokenizer, image, ocr_type=ocr_type, ocr_box=ocr_box)
|
| 66 |
+
elif task == "Fine-grained OCR (Color)":
|
| 67 |
+
res = model.chat(tokenizer, image, ocr_type=ocr_type, ocr_color=ocr_color)
|
| 68 |
+
elif task == "Multi-crop OCR":
|
| 69 |
+
res = model.chat_crop(tokenizer, image_file=image)
|
| 70 |
+
elif task == "Render Formatted OCR":
|
| 71 |
+
res = model.chat(tokenizer, image, ocr_type='format', render=True, save_render_file='./demo.html')
|
| 72 |
+
with open('./demo.html', 'r') as f:
|
| 73 |
+
html_content = f.read()
|
| 74 |
+
return res, html_content
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
|
| 76 |
+
return res, None
|
| 77 |
+
|
| 78 |
def update_inputs(task):
|
| 79 |
if task == "Plain Text OCR" or task == "Format Text OCR" or task == "Multi-crop OCR":
|
| 80 |
return [gr.update(visible=False)] * 4
|
|
|
|
| 94 |
]
|
| 95 |
elif task == "Render Formatted OCR":
|
| 96 |
return [gr.update(visible=False)] * 3 + [gr.update(visible=True)]
|
|
|
|
| 97 |
|
| 98 |
def ocr_demo(image, task, ocr_type, ocr_box, ocr_color):
|
| 99 |
+
res, html_content = process_image(image, task, ocr_type, ocr_box, ocr_color)
|
| 100 |
+
if html_content:
|
| 101 |
+
return res, html_content
|
| 102 |
+
return res, None
|
| 103 |
+
|
| 104 |
+
import gradio as gr
|
| 105 |
|
| 106 |
with gr.Blocks() as demo:
|
|
|
|
|
|
|
| 107 |
with gr.Row():
|
| 108 |
+
# Left Column: Description
|
| 109 |
+
with gr.Column(scale=1):
|
| 110 |
+
gr.Markdown(f"# {title}")
|
| 111 |
+
gr.Markdown(description)
|
| 112 |
+
|
| 113 |
+
# Right Column: App Inputs and Outputs
|
| 114 |
+
with gr.Column(scale=3):
|
| 115 |
+
image_input = gr.Image(type="filepath", label="Input Image")
|
| 116 |
task_dropdown = gr.Dropdown(
|
| 117 |
choices=[
|
| 118 |
"Plain Text OCR",
|
|
|
|
| 145 |
visible=False
|
| 146 |
)
|
| 147 |
submit_button = gr.Button("Process")
|
| 148 |
+
|
| 149 |
+
# OCR Result below the Submit button
|
| 150 |
output_text = gr.Textbox(label="OCR Result")
|
| 151 |
output_html = gr.HTML(label="Rendered HTML Output")
|
| 152 |
|
| 153 |
+
# Update inputs dynamically based on task selection
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 154 |
task_dropdown.change(
|
| 155 |
update_inputs,
|
| 156 |
inputs=[task_dropdown],
|
| 157 |
outputs=[ocr_type_dropdown, ocr_box_input, ocr_color_dropdown, render_checkbox]
|
| 158 |
)
|
| 159 |
|
| 160 |
+
# Process OCR on button click
|
| 161 |
submit_button.click(
|
| 162 |
ocr_demo,
|
| 163 |
inputs=[image_input, task_dropdown, ocr_type_dropdown, ocr_box_input, ocr_color_dropdown],
|
|
|
|
| 165 |
)
|
| 166 |
|
| 167 |
if __name__ == "__main__":
|
| 168 |
+
demo.launch()
|
content/index.md
ADDED
|
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: "🙋🏻♂️Welcome to Tonic's🫴🏻📸GOT-OCR"
|
| 3 |
+
---
|
| 4 |
+
|
| 5 |
+
# GOT-OCR Model Overview
|
| 6 |
+
|
| 7 |
+
The **GOT-OCR model** is a cutting-edge OCR system with **580M parameters**, designed to process a wide range of "characters." Equipped with a **high-compression encoder** and a **long-context decoder**, it excels in both scene and document-style images. The model supports **multi-page** and **dynamic resolution OCR**, enhancing its versatility.
|
| 8 |
+
|
| 9 |
+
### Output Formats
|
| 10 |
+
|
| 11 |
+
The model can generate results in several formats:
|
| 12 |
+
|
| 13 |
+
- **Plain Text**
|
| 14 |
+
- **Markdown**
|
| 15 |
+
- **TikZ diagrams**
|
| 16 |
+
- **Molecular SMILES strings**
|
| 17 |
+
|
| 18 |
+
Additionally, **interactive OCR** enables users to define regions of interest via **coordinates** or **colors**.
|
| 19 |
+
|
| 20 |
+
## Key Features
|
| 21 |
+
|
| 22 |
+
- **Plain Text OCR**: Extracts text from images.
|
| 23 |
+
- **Formatted Text OCR**: Retains the original formatting, including tables and formulas.
|
| 24 |
+
- **Fine-grained OCR**: Offers box-based and color-based OCR for precision in specific regions.
|
| 25 |
+
- **Multi-crop OCR**: Handles multiple cropped sections within an image.
|
| 26 |
+
- **Rendered Formatted OCR**: Outputs in markdown, TikZ, SMILES, and more, with rendered formatting.
|
| 27 |
+
|
| 28 |
+
## Supported Content Types
|
| 29 |
+
|
| 30 |
+
- Plain text
|
| 31 |
+
- Math/molecular formulas
|
| 32 |
+
- Tables and charts
|
| 33 |
+
- Sheet music
|
| 34 |
+
- Geometric shapes
|
| 35 |
+
|
| 36 |
+
## How to Use
|
| 37 |
+
|
| 38 |
+
1. Select a task from the dropdown menu.
|
| 39 |
+
2. Upload an image.
|
| 40 |
+
3. (Optional) Adjust parameters based on the selected task.
|
| 41 |
+
4. Click **Process** to view the results.
|
| 42 |
+
|
| 43 |
+
### Model Information
|
| 44 |
+
|
| 45 |
+
- **Model Name**: GOT-OCR 2.0
|
| 46 |
+
- **Hugging Face Repository**: [ucaslcl/GOT-OCR2_0](https://huggingface.co/ucaslcl/GOT-OCR2_0)
|
| 47 |
+
- **Environment**: CUDA 11.8 + PyTorch 2.0.1
|
| 48 |
+
|
| 49 |
+
---
|
| 50 |
+
|
| 51 |
+
### Join us :
|
| 52 |
+
|
| 53 |
+
🌟TeamTonic🌟 is always making cool demos! Join our active builder's 🛠️community 👻 [](https://discord.gg/qdfnvSPcqP) On 🤗Huggingface:[MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Tonic-AI](https://github.com/tonic-ai) & contribute to🌟 [Build Tonic](https://git.tonic-ai.com/contribute)🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗
|
requirements.txt
CHANGED
|
@@ -7,6 +7,7 @@
|
|
| 7 |
opencv-python
|
| 8 |
cairosvg
|
| 9 |
accelerate
|
| 10 |
-
numpy
|
| 11 |
loadimg
|
| 12 |
-
pillow
|
|
|
|
|
|
| 7 |
opencv-python
|
| 8 |
cairosvg
|
| 9 |
accelerate
|
| 10 |
+
numpy==1.26.4
|
| 11 |
loadimg
|
| 12 |
+
pillow
|
| 13 |
+
markdown
|