Update stroke-flask-docker/app.py
Browse files- stroke-flask-docker/app.py +95 -94
stroke-flask-docker/app.py
CHANGED
|
@@ -1,94 +1,95 @@
|
|
| 1 |
-
from flask import Flask, render_template, request, jsonify
|
| 2 |
-
import joblib
|
| 3 |
-
import numpy as np
|
| 4 |
-
import os
|
| 5 |
-
|
| 6 |
-
APP_PORT = int(os.getenv("PORT", "8080"))
|
| 7 |
-
|
| 8 |
-
app = Flask(__name__)
|
| 9 |
-
|
| 10 |
-
MODEL_PATH = os.getenv("MODEL_PATH", "model/stroke_pipeline.joblib")
|
| 11 |
-
|
| 12 |
-
# Load model pipeline at startup
|
| 13 |
-
try:
|
| 14 |
-
pipeline = joblib.load(MODEL_PATH)
|
| 15 |
-
except Exception as e:
|
| 16 |
-
raise RuntimeError(f"Failed to load model at {MODEL_PATH}: {e}")
|
| 17 |
-
|
| 18 |
-
FEATURE_ORDER = [
|
| 19 |
-
"gender",
|
| 20 |
-
"age",
|
| 21 |
-
"hypertension",
|
| 22 |
-
"heart_disease",
|
| 23 |
-
"ever_married",
|
| 24 |
-
"work_type",
|
| 25 |
-
"Residence_type",
|
| 26 |
-
"avg_glucose_level",
|
| 27 |
-
"bmi",
|
| 28 |
-
"smoking_status",
|
| 29 |
-
]
|
| 30 |
-
|
| 31 |
-
# Simple healthcheck
|
| 32 |
-
@app.route("/health", methods=["GET"])
|
| 33 |
-
def health():
|
| 34 |
-
return jsonify({"status": "ok"}), 200
|
| 35 |
-
|
| 36 |
-
@app.route("/", methods=["GET"])
|
| 37 |
-
def index():
|
| 38 |
-
# Provide default values to make testing easy
|
| 39 |
-
defaults = {
|
| 40 |
-
"gender": "Female",
|
| 41 |
-
"age": 45,
|
| 42 |
-
"hypertension": 0,
|
| 43 |
-
"heart_disease": 0,
|
| 44 |
-
"ever_married": "Yes",
|
| 45 |
-
"work_type": "Private",
|
| 46 |
-
"Residence_type": "Urban",
|
| 47 |
-
"avg_glucose_level": 95.0,
|
| 48 |
-
"bmi": 28.0,
|
| 49 |
-
"smoking_status": "never smoked",
|
| 50 |
-
}
|
| 51 |
-
return render_template("index.html", defaults=defaults)
|
| 52 |
-
|
| 53 |
-
@app.route("/predict", methods=["POST"])
|
| 54 |
-
def predict():
|
| 55 |
-
try:
|
| 56 |
-
# Read input either from JSON (API) or form (UI)
|
| 57 |
-
if request.is_json:
|
| 58 |
-
payload = request.get_json()
|
| 59 |
-
else:
|
| 60 |
-
payload = request.form.to_dict()
|
| 61 |
-
|
| 62 |
-
# Ensure types
|
| 63 |
-
# Map numeric fields
|
| 64 |
-
numeric_fields = ["age", "avg_glucose_level", "bmi"]
|
| 65 |
-
int_fields = ["hypertension", "heart_disease"]
|
| 66 |
-
|
| 67 |
-
for k in numeric_fields:
|
| 68 |
-
if k in payload:
|
| 69 |
-
payload[k] = float(payload[k])
|
| 70 |
-
for k in int_fields:
|
| 71 |
-
if k in payload:
|
| 72 |
-
payload[k] = int(payload[k])
|
| 73 |
-
|
| 74 |
-
# Build row in fixed feature order
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
|
|
|
|
|
| 1 |
+
from flask import Flask, render_template, request, jsonify
|
| 2 |
+
import joblib
|
| 3 |
+
import numpy as np
|
| 4 |
+
import os
|
| 5 |
+
|
| 6 |
+
APP_PORT = int(os.getenv("PORT", "8080"))
|
| 7 |
+
|
| 8 |
+
app = Flask(__name__)
|
| 9 |
+
|
| 10 |
+
MODEL_PATH = os.getenv("MODEL_PATH", "model/stroke_pipeline.joblib")
|
| 11 |
+
|
| 12 |
+
# Load model pipeline at startup
|
| 13 |
+
try:
|
| 14 |
+
pipeline = joblib.load(MODEL_PATH)
|
| 15 |
+
except Exception as e:
|
| 16 |
+
raise RuntimeError(f"Failed to load model at {MODEL_PATH}: {e}")
|
| 17 |
+
|
| 18 |
+
FEATURE_ORDER = [
|
| 19 |
+
"gender",
|
| 20 |
+
"age",
|
| 21 |
+
"hypertension",
|
| 22 |
+
"heart_disease",
|
| 23 |
+
"ever_married",
|
| 24 |
+
"work_type",
|
| 25 |
+
"Residence_type",
|
| 26 |
+
"avg_glucose_level",
|
| 27 |
+
"bmi",
|
| 28 |
+
"smoking_status",
|
| 29 |
+
]
|
| 30 |
+
|
| 31 |
+
# Simple healthcheck
|
| 32 |
+
@app.route("/health", methods=["GET"])
|
| 33 |
+
def health():
|
| 34 |
+
return jsonify({"status": "ok"}), 200
|
| 35 |
+
|
| 36 |
+
@app.route("/", methods=["GET"])
|
| 37 |
+
def index():
|
| 38 |
+
# Provide default values to make testing easy
|
| 39 |
+
defaults = {
|
| 40 |
+
"gender": "Female",
|
| 41 |
+
"age": 45,
|
| 42 |
+
"hypertension": 0,
|
| 43 |
+
"heart_disease": 0,
|
| 44 |
+
"ever_married": "Yes",
|
| 45 |
+
"work_type": "Private",
|
| 46 |
+
"Residence_type": "Urban",
|
| 47 |
+
"avg_glucose_level": 95.0,
|
| 48 |
+
"bmi": 28.0,
|
| 49 |
+
"smoking_status": "never smoked",
|
| 50 |
+
}
|
| 51 |
+
return render_template("index.html", defaults=defaults)
|
| 52 |
+
|
| 53 |
+
@app.route("/predict", methods=["POST"])
|
| 54 |
+
def predict():
|
| 55 |
+
try:
|
| 56 |
+
# Read input either from JSON (API) or form (UI)
|
| 57 |
+
if request.is_json:
|
| 58 |
+
payload = request.get_json()
|
| 59 |
+
else:
|
| 60 |
+
payload = request.form.to_dict()
|
| 61 |
+
|
| 62 |
+
# Ensure types
|
| 63 |
+
# Map numeric fields
|
| 64 |
+
numeric_fields = ["age", "avg_glucose_level", "bmi"]
|
| 65 |
+
int_fields = ["hypertension", "heart_disease"]
|
| 66 |
+
|
| 67 |
+
for k in numeric_fields:
|
| 68 |
+
if k in payload:
|
| 69 |
+
payload[k] = float(payload[k])
|
| 70 |
+
for k in int_fields:
|
| 71 |
+
if k in payload:
|
| 72 |
+
payload[k] = int(payload[k])
|
| 73 |
+
|
| 74 |
+
# Build row in fixed feature order
|
| 75 |
+
X = pd.DataFrame([{f: payload.get(f, None) for f in FEATURE_ORDER}])[FEATURE_ORDER]
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
# Predict proba (stroke = 1)
|
| 79 |
+
prob = float(pipeline.predict_proba(X)[0][1])
|
| 80 |
+
pred = int(prob >= 0.5)
|
| 81 |
+
|
| 82 |
+
result = {"stroke_probability": prob, "predicted_label": pred}
|
| 83 |
+
if request.is_json:
|
| 84 |
+
return jsonify(result)
|
| 85 |
+
else:
|
| 86 |
+
return render_template("index.html", result=result, defaults=payload)
|
| 87 |
+
except Exception as e:
|
| 88 |
+
msg = {"error": str(e)}
|
| 89 |
+
if request.is_json:
|
| 90 |
+
return jsonify(msg), 400
|
| 91 |
+
else:
|
| 92 |
+
return render_template("index.html", error=str(e), defaults=request.form), 400
|
| 93 |
+
|
| 94 |
+
if __name__ == "__main__":
|
| 95 |
+
app.run(host="0.0.0.0", port=APP_PORT, debug=False)
|