Upload 5 files
Browse files- app.py +94 -0
- model/stroke_pipeline.joblib +3 -0
- model/train_and_save.py +119 -0
- static/style.css +11 -0
- templates/index.html +128 -0
app.py
ADDED
|
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from flask import Flask, render_template, request, jsonify
|
| 2 |
+
import joblib
|
| 3 |
+
import numpy as np
|
| 4 |
+
import os
|
| 5 |
+
|
| 6 |
+
APP_PORT = int(os.getenv("PORT", "8080"))
|
| 7 |
+
|
| 8 |
+
app = Flask(__name__)
|
| 9 |
+
|
| 10 |
+
MODEL_PATH = os.getenv("MODEL_PATH", "model/stroke_pipeline.joblib")
|
| 11 |
+
|
| 12 |
+
# Load model pipeline at startup
|
| 13 |
+
try:
|
| 14 |
+
pipeline = joblib.load(MODEL_PATH)
|
| 15 |
+
except Exception as e:
|
| 16 |
+
raise RuntimeError(f"Failed to load model at {MODEL_PATH}: {e}")
|
| 17 |
+
|
| 18 |
+
FEATURE_ORDER = [
|
| 19 |
+
"gender",
|
| 20 |
+
"age",
|
| 21 |
+
"hypertension",
|
| 22 |
+
"heart_disease",
|
| 23 |
+
"ever_married",
|
| 24 |
+
"work_type",
|
| 25 |
+
"Residence_type",
|
| 26 |
+
"avg_glucose_level",
|
| 27 |
+
"bmi",
|
| 28 |
+
"smoking_status",
|
| 29 |
+
]
|
| 30 |
+
|
| 31 |
+
# Simple healthcheck
|
| 32 |
+
@app.route("/health", methods=["GET"])
|
| 33 |
+
def health():
|
| 34 |
+
return jsonify({"status": "ok"}), 200
|
| 35 |
+
|
| 36 |
+
@app.route("/", methods=["GET"])
|
| 37 |
+
def index():
|
| 38 |
+
# Provide default values to make testing easy
|
| 39 |
+
defaults = {
|
| 40 |
+
"gender": "Female",
|
| 41 |
+
"age": 45,
|
| 42 |
+
"hypertension": 0,
|
| 43 |
+
"heart_disease": 0,
|
| 44 |
+
"ever_married": "Yes",
|
| 45 |
+
"work_type": "Private",
|
| 46 |
+
"Residence_type": "Urban",
|
| 47 |
+
"avg_glucose_level": 95.0,
|
| 48 |
+
"bmi": 28.0,
|
| 49 |
+
"smoking_status": "never smoked",
|
| 50 |
+
}
|
| 51 |
+
return render_template("index.html", defaults=defaults)
|
| 52 |
+
|
| 53 |
+
@app.route("/predict", methods=["POST"])
|
| 54 |
+
def predict():
|
| 55 |
+
try:
|
| 56 |
+
# Read input either from JSON (API) or form (UI)
|
| 57 |
+
if request.is_json:
|
| 58 |
+
payload = request.get_json()
|
| 59 |
+
else:
|
| 60 |
+
payload = request.form.to_dict()
|
| 61 |
+
|
| 62 |
+
# Ensure types
|
| 63 |
+
# Map numeric fields
|
| 64 |
+
numeric_fields = ["age", "avg_glucose_level", "bmi"]
|
| 65 |
+
int_fields = ["hypertension", "heart_disease"]
|
| 66 |
+
|
| 67 |
+
for k in numeric_fields:
|
| 68 |
+
if k in payload:
|
| 69 |
+
payload[k] = float(payload[k])
|
| 70 |
+
for k in int_fields:
|
| 71 |
+
if k in payload:
|
| 72 |
+
payload[k] = int(payload[k])
|
| 73 |
+
|
| 74 |
+
# Build row in fixed feature order
|
| 75 |
+
row = [[payload.get(f, None) for f in FEATURE_ORDER]]
|
| 76 |
+
|
| 77 |
+
# Predict proba (stroke = 1)
|
| 78 |
+
prob = float(pipeline.predict_proba(row)[0][1])
|
| 79 |
+
pred = int(prob >= 0.5)
|
| 80 |
+
|
| 81 |
+
result = {"stroke_probability": prob, "predicted_label": pred}
|
| 82 |
+
if request.is_json:
|
| 83 |
+
return jsonify(result)
|
| 84 |
+
else:
|
| 85 |
+
return render_template("index.html", result=result, defaults=payload)
|
| 86 |
+
except Exception as e:
|
| 87 |
+
msg = {"error": str(e)}
|
| 88 |
+
if request.is_json:
|
| 89 |
+
return jsonify(msg), 400
|
| 90 |
+
else:
|
| 91 |
+
return render_template("index.html", error=str(e), defaults=request.form), 400
|
| 92 |
+
|
| 93 |
+
if __name__ == "__main__":
|
| 94 |
+
app.run(host="0.0.0.0", port=APP_PORT, debug=False)
|
model/stroke_pipeline.joblib
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:187a196587db135daceeb725e5ac58d9cc64403e6a88627a19dda8d1b998b857
|
| 3 |
+
size 6903
|
model/train_and_save.py
ADDED
|
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Train & save a full sklearn Pipeline for stroke prediction.
|
| 3 |
+
|
| 4 |
+
- If ./data/healthcare-dataset-stroke-data.csv exists, trains on it (matching the notebook structure).
|
| 5 |
+
- Otherwise, trains on a synthetic dataset with the same schema.
|
| 6 |
+
Saves: model/stroke_pipeline.joblib
|
| 7 |
+
"""
|
| 8 |
+
from pathlib import Path
|
| 9 |
+
import pandas as pd
|
| 10 |
+
import numpy as np
|
| 11 |
+
import joblib
|
| 12 |
+
|
| 13 |
+
from sklearn.compose import ColumnTransformer
|
| 14 |
+
from sklearn.preprocessing import OneHotEncoder, StandardScaler
|
| 15 |
+
from sklearn.impute import SimpleImputer
|
| 16 |
+
from sklearn.linear_model import LogisticRegression
|
| 17 |
+
from sklearn.pipeline import Pipeline
|
| 18 |
+
from sklearn.model_selection import train_test_split
|
| 19 |
+
from sklearn.metrics import classification_report, roc_auc_score
|
| 20 |
+
|
| 21 |
+
DATA_PATH = Path("C:\Users\wissa\Downloads\data\stroke-flask-docker\data\healthcare-dataset-stroke-data.csv")
|
| 22 |
+
OUT_PATH = Path("C:\Users\wissa\Downloads\data\stroke-flask-docker\model/stroke_pipeline.joblib")
|
| 23 |
+
OUT_PATH.parent.mkdir(parents=True, exist_ok=True)
|
| 24 |
+
|
| 25 |
+
CATEGORICAL = ["gender","ever_married","work_type","Residence_type","smoking_status"]
|
| 26 |
+
NUMERIC = ["age","avg_glucose_level","bmi"]
|
| 27 |
+
BINARY_INT = ["hypertension","heart_disease"] # keep as numeric ints
|
| 28 |
+
|
| 29 |
+
def load_real_or_synthetic():
|
| 30 |
+
if DATA_PATH.exists():
|
| 31 |
+
df = pd.read_csv(DATA_PATH)
|
| 32 |
+
# expected columns from the Kaggle stroke dataset
|
| 33 |
+
must_have = ["gender","age","hypertension","heart_disease","ever_married",
|
| 34 |
+
"work_type","Residence_type","avg_glucose_level","bmi",
|
| 35 |
+
"smoking_status","stroke"]
|
| 36 |
+
missing = set(must_have) - set(df.columns)
|
| 37 |
+
if missing:
|
| 38 |
+
raise ValueError(f"Dataset is missing columns: {missing}")
|
| 39 |
+
# drop id if present
|
| 40 |
+
df = df[[c for c in df.columns if c in must_have]]
|
| 41 |
+
return df
|
| 42 |
+
else:
|
| 43 |
+
# Synthetic data with the right columns
|
| 44 |
+
rng = np.random.RandomState(42)
|
| 45 |
+
N = 2000
|
| 46 |
+
df = pd.DataFrame({
|
| 47 |
+
"gender": rng.choice(["Male","Female","Other"], size=N, p=[0.49,0.50,0.01]),
|
| 48 |
+
"age": rng.randint(1, 90, size=N),
|
| 49 |
+
"hypertension": rng.binomial(1, 0.15, size=N),
|
| 50 |
+
"heart_disease": rng.binomial(1, 0.08, size=N),
|
| 51 |
+
"ever_married": rng.choice(["Yes","No"], size=N, p=[0.7,0.3]),
|
| 52 |
+
"work_type": rng.choice(["Private","Self-employed","Govt_job","children","Never_worked"], size=N, p=[0.6,0.2,0.18,0.01,0.01]),
|
| 53 |
+
"Residence_type": rng.choice(["Urban","Rural"], size=N, p=[0.55,0.45]),
|
| 54 |
+
"avg_glucose_level": rng.normal(100, 30, size=N).clip(50, 300),
|
| 55 |
+
"bmi": rng.normal(28, 6, size=N).clip(10, 60),
|
| 56 |
+
"smoking_status": rng.choice(["formerly smoked","never smoked","smokes","Unknown"], size=N, p=[0.2,0.6,0.15,0.05]),
|
| 57 |
+
})
|
| 58 |
+
# Fabricate a signal for stroke
|
| 59 |
+
logit = (
|
| 60 |
+
0.03*df["age"] +
|
| 61 |
+
0.02*(df["avg_glucose_level"]-100) +
|
| 62 |
+
0.05*(df["bmi"]-28) +
|
| 63 |
+
0.8*df["hypertension"] +
|
| 64 |
+
0.9*df["heart_disease"] +
|
| 65 |
+
0.3*(df["ever_married"]=="Yes").astype(int)
|
| 66 |
+
)
|
| 67 |
+
prob = 1/(1+np.exp(- (logit-4.0))) # bias to keep prevalence low
|
| 68 |
+
df["stroke"] = (rng.rand(len(df)) < prob).astype(int)
|
| 69 |
+
return df
|
| 70 |
+
|
| 71 |
+
def build_pipeline():
|
| 72 |
+
cat_proc = Pipeline(steps=[
|
| 73 |
+
("impute", SimpleImputer(strategy="most_frequent")),
|
| 74 |
+
("ohe", OneHotEncoder(handle_unknown="ignore"))
|
| 75 |
+
])
|
| 76 |
+
num_proc = Pipeline(steps=[
|
| 77 |
+
("impute", SimpleImputer(strategy="median")),
|
| 78 |
+
("scale", StandardScaler())
|
| 79 |
+
])
|
| 80 |
+
# Binary int -> treat as numeric (no scaling needed, but fine to scale)
|
| 81 |
+
bin_proc = Pipeline(steps=[
|
| 82 |
+
("impute", SimpleImputer(strategy="most_frequent")),
|
| 83 |
+
("scale", StandardScaler(with_mean=False)) # keep sparse-friendly path
|
| 84 |
+
])
|
| 85 |
+
|
| 86 |
+
pre = ColumnTransformer(transformers=[
|
| 87 |
+
("cat", cat_proc, CATEGORICAL),
|
| 88 |
+
("num", num_proc, NUMERIC),
|
| 89 |
+
("bin", bin_proc, BINARY_INT),
|
| 90 |
+
])
|
| 91 |
+
|
| 92 |
+
clf = LogisticRegression(max_iter=1000, n_jobs=None)
|
| 93 |
+
pipeline = Pipeline([("pre", pre), ("clf", clf)])
|
| 94 |
+
return pipeline
|
| 95 |
+
|
| 96 |
+
def main():
|
| 97 |
+
df = load_real_or_synthetic()
|
| 98 |
+
|
| 99 |
+
X = df.drop(columns=["stroke"])
|
| 100 |
+
y = df["stroke"].astype(int)
|
| 101 |
+
|
| 102 |
+
X_train, X_test, y_train, y_test = train_test_split(
|
| 103 |
+
X, y, test_size=0.2, random_state=42, stratify=y
|
| 104 |
+
)
|
| 105 |
+
|
| 106 |
+
pipeline = build_pipeline()
|
| 107 |
+
pipeline.fit(X_train, y_train)
|
| 108 |
+
|
| 109 |
+
y_prob = pipeline.predict_proba(X_test)[:,1]
|
| 110 |
+
y_pred = (y_prob >= 0.5).astype(int)
|
| 111 |
+
|
| 112 |
+
print("AUC:", roc_auc_score(y_test, y_prob))
|
| 113 |
+
print("Report:\n", classification_report(y_test, y_pred))
|
| 114 |
+
|
| 115 |
+
joblib.dump(pipeline, OUT_PATH)
|
| 116 |
+
print(f"Saved pipeline to {OUT_PATH.resolve()}")
|
| 117 |
+
|
| 118 |
+
if __name__ == "__main__":
|
| 119 |
+
main()
|
static/style.css
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*{box-sizing:border-box}body{font-family:system-ui,-apple-system,Segoe UI,Roboto,Helvetica,Arial,sans-serif;background:#0b1220;color:#e8eef9;margin:0;padding:2rem}
|
| 2 |
+
.container{max-width:760px;margin:0 auto}
|
| 3 |
+
h1{margin-top:0}
|
| 4 |
+
.card{background:#111a2b;border:1px solid #1e2a44;border-radius:14px;padding:1rem;margin:1rem 0}
|
| 5 |
+
.row{display:flex;gap:1rem;margin:.6rem 0;align-items:center}
|
| 6 |
+
.row label{width:200px}
|
| 7 |
+
input,select,button{padding:.5rem;border-radius:8px;border:1px solid #2a3a5e;background:#0e1626;color:#e8eef9}
|
| 8 |
+
button{cursor:pointer}
|
| 9 |
+
.error{background:#3b0d0d;border:1px solid #7c1919;color:#ffd6d6;border-radius:10px;padding:.75rem;margin-bottom:1rem}
|
| 10 |
+
.result p{margin:.3rem 0}
|
| 11 |
+
.api code, .api pre{display:block;background:#0e1626;border:1px solid #2a3a5e;padding:8px;border-radius:10px;overflow-x:auto}
|
templates/index.html
ADDED
|
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
<!DOCTYPE html>
|
| 2 |
+
<html lang="en">
|
| 3 |
+
<head>
|
| 4 |
+
<meta charset="UTF-8"/>
|
| 5 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0"/>
|
| 6 |
+
<title>Stroke Risk Predictor</title>
|
| 7 |
+
<link rel="stylesheet" href="/static/style.css"/>
|
| 8 |
+
</head>
|
| 9 |
+
<body>
|
| 10 |
+
<div class="container">
|
| 11 |
+
<h1>π Stroke Risk Predictor</h1>
|
| 12 |
+
<p>Enter patient details and get a predicted stroke probability.</p>
|
| 13 |
+
|
| 14 |
+
{% if error %}
|
| 15 |
+
<div class="error">{{ error }}</div>
|
| 16 |
+
{% endif %}
|
| 17 |
+
|
| 18 |
+
<form method="POST" action="/predict" class="card">
|
| 19 |
+
<div class="row">
|
| 20 |
+
<label>Gender</label>
|
| 21 |
+
<select name="gender">
|
| 22 |
+
{% for g in ["Male","Female","Other"] %}
|
| 23 |
+
<option value="{{g}}" {% if defaults.gender==g %}selected{% endif %}>{{g}}</option>
|
| 24 |
+
{% endfor %}
|
| 25 |
+
</select>
|
| 26 |
+
</div>
|
| 27 |
+
|
| 28 |
+
<div class="row">
|
| 29 |
+
<label>Age</label>
|
| 30 |
+
<input type="number" name="age" step="1" min="0" max="120" value="{{defaults.age}}"/>
|
| 31 |
+
</div>
|
| 32 |
+
|
| 33 |
+
<div class="row">
|
| 34 |
+
<label>Hypertension</label>
|
| 35 |
+
<select name="hypertension">
|
| 36 |
+
{% for v in [0,1] %}
|
| 37 |
+
<option value="{{v}}" {% if defaults.hypertension==v %}selected{% endif %}>{{v}}</option>
|
| 38 |
+
{% endfor %}
|
| 39 |
+
</select>
|
| 40 |
+
</div>
|
| 41 |
+
|
| 42 |
+
<div class="row">
|
| 43 |
+
<label>Heart Disease</label>
|
| 44 |
+
<select name="heart_disease">
|
| 45 |
+
{% for v in [0,1] %}
|
| 46 |
+
<option value="{{v}}" {% if defaults.heart_disease==v %}selected{% endif %}>{{v}}</option>
|
| 47 |
+
{% endfor %}
|
| 48 |
+
</select>
|
| 49 |
+
</div>
|
| 50 |
+
|
| 51 |
+
<div class="row">
|
| 52 |
+
<label>Ever Married</label>
|
| 53 |
+
<select name="ever_married">
|
| 54 |
+
{% for v in ["Yes","No"] %}
|
| 55 |
+
<option value="{{v}}" {% if defaults.ever_married==v %}selected{% endif %}>{{v}}</option>
|
| 56 |
+
{% endfor %}
|
| 57 |
+
</select>
|
| 58 |
+
</div>
|
| 59 |
+
|
| 60 |
+
<div class="row">
|
| 61 |
+
<label>Work Type</label>
|
| 62 |
+
<select name="work_type">
|
| 63 |
+
{% for v in ["Private","Self-employed","Govt_job","children","Never_worked"] %}
|
| 64 |
+
<option value="{{v}}" {% if defaults.work_type==v %}selected{% endif %}>{{v}}</option>
|
| 65 |
+
{% endfor %}
|
| 66 |
+
</select>
|
| 67 |
+
</div>
|
| 68 |
+
|
| 69 |
+
<div class="row">
|
| 70 |
+
<label>Residence Type</label>
|
| 71 |
+
<select name="Residence_type">
|
| 72 |
+
{% for v in ["Urban","Rural"] %}
|
| 73 |
+
<option value="{{v}}" {% if defaults.Residence_type==v %}selected{% endif %}>{{v}}</option>
|
| 74 |
+
{% endfor %}
|
| 75 |
+
</select>
|
| 76 |
+
</div>
|
| 77 |
+
|
| 78 |
+
<div class="row">
|
| 79 |
+
<label>Avg. Glucose Level</label>
|
| 80 |
+
<input type="number" name="avg_glucose_level" step="0.01" value="{{defaults.avg_glucose_level}}"/>
|
| 81 |
+
</div>
|
| 82 |
+
|
| 83 |
+
<div class="row">
|
| 84 |
+
<label>BMI</label>
|
| 85 |
+
<input type="number" name="bmi" step="0.1" value="{{defaults.bmi}}"/>
|
| 86 |
+
</div>
|
| 87 |
+
|
| 88 |
+
<div class="row">
|
| 89 |
+
<label>Smoking Status</label>
|
| 90 |
+
<select name="smoking_status">
|
| 91 |
+
{% for v in ["formerly smoked","never smoked","smokes","Unknown"] %}
|
| 92 |
+
<option value="{{v}}" {% if defaults.smoking_status==v %}selected{% endif %}>{{v}}</option>
|
| 93 |
+
{% endfor %}
|
| 94 |
+
</select>
|
| 95 |
+
</div>
|
| 96 |
+
|
| 97 |
+
<button type="submit">Predict</button>
|
| 98 |
+
</form>
|
| 99 |
+
|
| 100 |
+
{% if result %}
|
| 101 |
+
<div class="result card">
|
| 102 |
+
<h2>Result</h2>
|
| 103 |
+
<p><strong>Predicted Stroke Probability:</strong> {{ '%.3f'|format(result.stroke_probability) }}</p>
|
| 104 |
+
<p><strong>Predicted Label (1 = Stroke):</strong> {{ result.predicted_label }}</p>
|
| 105 |
+
</div>
|
| 106 |
+
{% endif %}
|
| 107 |
+
|
| 108 |
+
<div class="api card">
|
| 109 |
+
<h3>API</h3>
|
| 110 |
+
<code>POST /predict</code> with JSON:
|
| 111 |
+
<pre>
|
| 112 |
+
{
|
| 113 |
+
"gender":"Female",
|
| 114 |
+
"age":45,
|
| 115 |
+
"hypertension":0,
|
| 116 |
+
"heart_disease":0,
|
| 117 |
+
"ever_married":"Yes",
|
| 118 |
+
"work_type":"Private",
|
| 119 |
+
"Residence_type":"Urban",
|
| 120 |
+
"avg_glucose_level":95.0,
|
| 121 |
+
"bmi":28.0,
|
| 122 |
+
"smoking_status":"never smoked"
|
| 123 |
+
}
|
| 124 |
+
</pre>
|
| 125 |
+
</div>
|
| 126 |
+
</div>
|
| 127 |
+
</body>
|
| 128 |
+
</html>
|