Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| model_name = "vijjuk/codegen-350M-mono-python-18k-alpaca" | |
| demo = gr.load(model_name, src="models") | |
| demo.launch() | |
| #import gradio as gr | |
| #from transformers import AutoTokenizer, AutoModelForCausalLM | |
| #base_model = AutoModelForCausalLM.from_pretrained(model_name) | |
| #tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) | |
| #tokenizer.pad_token = tokenizer.eos_token | |
| #tokenizer.padding_side = "right" | |
| # def query(instruction, input): | |
| # prompt = f"""### Instruction: | |
| # Use the Task below and the Input given to write the Response, which is a programming code that can solve the Task. | |
| # ### Task: | |
| # {instruction} | |
| # ### Input: | |
| # {input} | |
| # ### Response: | |
| # """ | |
| # input_ids = tokenizer(prompt, return_tensors="pt", truncation=True) | |
| # output_base = base_model.generate(input_ids=input_ids, max_new_tokens=500, do_sample=True, top_p=0.9,temperature=0.5) | |
| # response = "{tokenizer.batch_decode(output_base.detach().cpu().numpy(), skip_special_tokens=True)[0][len(prompt):]}" | |
| # return response | |
| #inputs = ["text", "text"] | |
| #outputs = "text" | |
| #iface = gr.Interface(fn=query, inputs=inputs, outputs=outputs) | |
| #iface.launch() |