sam3 / app.py
akhaliq's picture
akhaliq HF Staff
Update app.py
4c0f830 verified
raw
history blame
5.99 kB
import spaces
import gradio as gr
import torch
import numpy as np
from PIL import Image
from transformers import Sam3Processor, Sam3Model
import requests
import warnings
warnings.filterwarnings("ignore")
# Global model and processor
device = "cuda" if torch.cuda.is_available() else "cpu"
model = Sam3Model.from_pretrained("facebook/sam3", torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32).to(device)
processor = Sam3Processor.from_pretrained("facebook/sam3")
@spaces.GPU()
def segment(image: Image.Image, text: str, threshold: float, mask_threshold: float):
"""
Perform promptable concept segmentation using SAM3.
Returns format compatible with gr.AnnotatedImage: (image, [(mask, label), ...])
"""
if image is None:
return None, "❌ Please upload an image."
if not text.strip():
return (image, []), "❌ Please enter a text prompt."
try:
inputs = processor(images=image, text=text.strip(), return_tensors="pt").to(device)
for key in inputs:
if inputs[key].dtype == torch.float32:
inputs[key] = inputs[key].to(model.dtype)
with torch.no_grad():
outputs = model(**inputs)
results = processor.post_process_instance_segmentation(
outputs,
threshold=threshold,
mask_threshold=mask_threshold,
target_sizes=inputs.get("original_sizes").tolist()
)[0]
n_masks = len(results['masks'])
if n_masks == 0:
return (image, []), f"❌ No objects found matching '{text}' (try adjusting thresholds)."
# Format for AnnotatedImage: list of (mask, label) tuples
# mask should be numpy array with values 0-1 (float) matching image dimensions
annotations = []
for i, (mask, score) in enumerate(zip(results['masks'], results['scores'])):
# Convert binary mask to float numpy array (0-1 range)
mask_np = mask.cpu().numpy().astype(np.float32)
label = f"{text} #{i+1} ({score:.2f})"
annotations.append((mask_np, label))
scores_text = ", ".join([f"{s:.2f}" for s in results['scores'].cpu().numpy()[:5]])
info = f"βœ… Found **{n_masks}** objects matching **'{text}'**\nConfidence scores: {scores_text}{'...' if n_masks > 5 else ''}"
# Return tuple: (base_image, list_of_annotations)
return (image, annotations), info
except Exception as e:
return (image, []), f"❌ Error during segmentation: {str(e)}"
def clear_all():
"""Clear all inputs and outputs"""
return None, "", None, 0.5, 0.5, "πŸ“ Enter a prompt and click **Segment** to start."
def segment_example(image_path: str, prompt: str):
"""Handle example clicks"""
if image_path.startswith("http"):
image = Image.open(requests.get(image_path, stream=True).raw).convert("RGB")
else:
image = Image.open(image_path).convert("RGB")
return segment(image, prompt, 0.5, 0.5)
# Gradio Interface
with gr.Blocks(
theme=gr.themes.Soft(),
title="SAM3 - Promptable Concept Segmentation",
css=".gradio-container {max-width: 1400px !important;}"
) as demo:
gr.Markdown(
"""
# SAM3 - Promptable Concept Segmentation (PCS)
**SAM3** performs zero-shot instance segmentation using natural language prompts.
Upload an image, enter a text prompt (e.g., "person", "car", "dog"), and get segmentation masks.
Built with [anycoder](https://huggingface.co/spaces/akhaliq/anycoder)
"""
)
gr.Markdown("### Inputs")
with gr.Row(variant="panel"):
image_input = gr.Image(
label="Input Image",
type="pil",
height=400,
)
# AnnotatedImage expects: (base_image, [(mask, label), ...])
image_output = gr.AnnotatedImage(
label="Output (Segmented Image)",
height=400,
show_legend=True,
)
with gr.Row():
text_input = gr.Textbox(
label="Text Prompt",
placeholder="e.g., person, ear, cat, bicycle...",
scale=3
)
clear_btn = gr.Button("πŸ” Clear", size="sm", variant="secondary")
with gr.Row():
thresh_slider = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.5,
step=0.01,
label="Detection Threshold",
info="Higher = fewer detections"
)
mask_thresh_slider = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.5,
step=0.01,
label="Mask Threshold",
info="Higher = sharper masks"
)
info_output = gr.Markdown(
value="πŸ“ Enter a prompt and click **Segment** to start.",
label="Info / Results"
)
segment_btn = gr.Button("🎯 Segment", variant="primary", size="lg")
gr.Examples(
examples=[
["http://images.cocodataset.org/val2017/000000077595.jpg", "cat"],
],
inputs=[image_input, text_input],
outputs=[image_output, info_output],
fn=segment_example,
cache_examples=False,
)
clear_btn.click(
fn=clear_all,
outputs=[image_input, text_input, image_output, thresh_slider, mask_thresh_slider, info_output]
)
segment_btn.click(
fn=segment,
inputs=[image_input, text_input, thresh_slider, mask_thresh_slider],
outputs=[image_output, info_output]
)
gr.Markdown(
"""
### Notes
- **Model**: [facebook/sam3](https://huggingface.co/facebook/sam3)
- Click on segments in the output to see labels
- GPU recommended for faster inference
"""
)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860, share=False, debug=True)