Spaces:
Running
on
Zero
Running
on
Zero
Upload folder using huggingface_hub
Browse files- app.py +198 -0
- requirements.txt +17 -0
- utils.py +2 -0
app.py
ADDED
|
@@ -0,0 +1,198 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
import numpy as np
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import matplotlib
|
| 6 |
+
from transformers import Sam3Processor, Sam3Model
|
| 7 |
+
import warnings
|
| 8 |
+
warnings.filterwarnings("ignore")
|
| 9 |
+
|
| 10 |
+
# Global model and processor
|
| 11 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 12 |
+
model = Sam3Model.from_pretrained("facebook/sam3", torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32).to(device)
|
| 13 |
+
processor = Sam3Processor.from_pretrained("facebook/sam3")
|
| 14 |
+
|
| 15 |
+
def overlay_masks(image: Image.Image, masks: torch.Tensor) -> Image.Image:
|
| 16 |
+
"""
|
| 17 |
+
Overlay segmentation masks on the input image using rainbow colormap.
|
| 18 |
+
"""
|
| 19 |
+
image = image.convert("RGBA")
|
| 20 |
+
masks = 255 * masks.cpu().numpy().astype(np.uint8)
|
| 21 |
+
|
| 22 |
+
n_masks = masks.shape[0]
|
| 23 |
+
if n_masks == 0:
|
| 24 |
+
return image.convert("RGB")
|
| 25 |
+
|
| 26 |
+
cmap = matplotlib.colormaps.get_cmap("rainbow").resampled(n_masks)
|
| 27 |
+
colors = [
|
| 28 |
+
tuple(int(c * 255) for c in cmap(i)[:3])
|
| 29 |
+
for i in range(n_masks)
|
| 30 |
+
]
|
| 31 |
+
|
| 32 |
+
for mask, color in zip(masks, colors):
|
| 33 |
+
mask_img = Image.fromarray(mask)
|
| 34 |
+
overlay = Image.new("RGBA", image.size, color + (0,))
|
| 35 |
+
alpha = mask_img.point(lambda v: int(v * 0.5))
|
| 36 |
+
overlay.putalpha(alpha)
|
| 37 |
+
image = Image.alpha_composite(image, overlay)
|
| 38 |
+
return image
|
| 39 |
+
|
| 40 |
+
def segment(image: Image.Image, text: str, threshold: float, mask_threshold: float):
|
| 41 |
+
"""
|
| 42 |
+
Perform promptable concept segmentation using SAM3.
|
| 43 |
+
"""
|
| 44 |
+
if image is None:
|
| 45 |
+
return None, "β Please upload an image."
|
| 46 |
+
|
| 47 |
+
try:
|
| 48 |
+
inputs = processor(images=image, text=text.strip(), return_tensors="pt").to(device)
|
| 49 |
+
|
| 50 |
+
with torch.no_grad():
|
| 51 |
+
outputs = model(**inputs)
|
| 52 |
+
|
| 53 |
+
results = processor.post_process_instance_segmentation(
|
| 54 |
+
outputs,
|
| 55 |
+
threshold=threshold,
|
| 56 |
+
mask_threshold=mask_threshold,
|
| 57 |
+
target_sizes=inputs.get("original_sizes").tolist()
|
| 58 |
+
)[0]
|
| 59 |
+
|
| 60 |
+
n_masks = len(results['masks'])
|
| 61 |
+
if n_masks == 0:
|
| 62 |
+
return image, f"β No objects found matching '{text}' (try adjusting thresholds or changing prompt)."
|
| 63 |
+
|
| 64 |
+
overlaid_image = overlay_masks(image, results["masks"])
|
| 65 |
+
|
| 66 |
+
scores_text = ", ".join([f"{s:.2f}" for s in results['scores'].cpu().numpy()[:5]]) # Top 5 scores
|
| 67 |
+
info = f"β
Found **{n_masks}** objects matching **'{text}'**\nConfidence scores: {scores_text}{'...' if n_masks > 5 else ''}"
|
| 68 |
+
|
| 69 |
+
return overlaid_image, info
|
| 70 |
+
|
| 71 |
+
except Exception as e:
|
| 72 |
+
return image, f"β Error during segmentation: {str(e)}"
|
| 73 |
+
|
| 74 |
+
# Gradio Interface
|
| 75 |
+
with gr.Blocks(
|
| 76 |
+
theme=gr.themes.Soft(),
|
| 77 |
+
title="SAM3 - Promptable Concept Segmentation",
|
| 78 |
+
css="""
|
| 79 |
+
.gradio-container {max-width: 1400px !important;}
|
| 80 |
+
"""
|
| 81 |
+
) as demo:
|
| 82 |
+
gr.Markdown(
|
| 83 |
+
"""
|
| 84 |
+
# SAM3 - Promptable Concept Segmentation (PCS)
|
| 85 |
+
|
| 86 |
+
**SAM3** performs zero-shot instance segmentation using natural language prompts on images.
|
| 87 |
+
Upload an image, enter a text prompt (e.g., "person", "car", "dog"), and get segmentation masks for all matching objects.
|
| 88 |
+
|
| 89 |
+
Built with [anycoder](https://huggingface.co/spaces/akhaliq/anycoder)
|
| 90 |
+
"""
|
| 91 |
+
)
|
| 92 |
+
|
| 93 |
+
gr.Markdown("### Inputs")
|
| 94 |
+
with gr.Row(variant="panel"):
|
| 95 |
+
image_input = gr.Image(
|
| 96 |
+
label="Input Image",
|
| 97 |
+
type="pil",
|
| 98 |
+
height=400,
|
| 99 |
+
sources=["upload", "url"],
|
| 100 |
+
info="Upload or paste image URL"
|
| 101 |
+
)
|
| 102 |
+
image_output = gr.Image(
|
| 103 |
+
label="Output (Segmented Image)",
|
| 104 |
+
height=400,
|
| 105 |
+
interactive=False
|
| 106 |
+
)
|
| 107 |
+
|
| 108 |
+
with gr.Row():
|
| 109 |
+
text_input = gr.Textbox(
|
| 110 |
+
label="Text Prompt",
|
| 111 |
+
placeholder="e.g., a person, ear, cat, bicycle...",
|
| 112 |
+
scale=3
|
| 113 |
+
)
|
| 114 |
+
gr.Button("π Clear", size="sm", variant="secondary").click(
|
| 115 |
+
fn=lambda: (None, "", None, 0.5, 0.5), outputs=[image_output, text_input, image_input, thresh_slider, mask_thresh_slider]
|
| 116 |
+
)
|
| 117 |
+
|
| 118 |
+
with gr.Row():
|
| 119 |
+
thresh_slider = gr.Slider(
|
| 120 |
+
minimum=0.0,
|
| 121 |
+
maximum=1.0,
|
| 122 |
+
value=0.5,
|
| 123 |
+
step=0.01,
|
| 124 |
+
label="Detection Threshold",
|
| 125 |
+
info="Higher values = fewer detections (objectness confidence)"
|
| 126 |
+
)
|
| 127 |
+
mask_thresh_slider = gr.Slider(
|
| 128 |
+
minimum=0.0,
|
| 129 |
+
maximum=1.0,
|
| 130 |
+
value=0.5,
|
| 131 |
+
step=0.01,
|
| 132 |
+
label="Mask Threshold",
|
| 133 |
+
info="Higher values = sharper masks"
|
| 134 |
+
)
|
| 135 |
+
|
| 136 |
+
info_output = gr.Markdown(
|
| 137 |
+
value="π Enter a prompt and click **Segment** to start.",
|
| 138 |
+
label="Info / Results"
|
| 139 |
+
)
|
| 140 |
+
|
| 141 |
+
segment_btn = gr.Button("π― Segment", variant="primary", size="lg")
|
| 142 |
+
|
| 143 |
+
# Event
|
| 144 |
+
segment_btn.click(
|
| 145 |
+
fn=segment,
|
| 146 |
+
inputs=[image_input, text_input, thresh_slider, mask_thresh_slider],
|
| 147 |
+
outputs=[image_output, info_output]
|
| 148 |
+
).then(
|
| 149 |
+
fn=lambda: gr.Info("Segmentation complete!"),
|
| 150 |
+
_js="() => {}"
|
| 151 |
+
)
|
| 152 |
+
|
| 153 |
+
# Examples
|
| 154 |
+
gr.Markdown("### Examples")
|
| 155 |
+
examples = [
|
| 156 |
+
[
|
| 157 |
+
"http://images.cocodataset.org/val2017/000000077595.jpg",
|
| 158 |
+
"ear"
|
| 159 |
+
],
|
| 160 |
+
[
|
| 161 |
+
"http://images.cocodataset.org/val2017/000000039769.jpg",
|
| 162 |
+
"cat"
|
| 163 |
+
],
|
| 164 |
+
[
|
| 165 |
+
"http://images.cocodataset.org/val2017/000000001247.jpg",
|
| 166 |
+
"person"
|
| 167 |
+
],
|
| 168 |
+
[
|
| 169 |
+
"http://images.cocodataset.org/val2017/000000521315.jpg",
|
| 170 |
+
"bicycle"
|
| 171 |
+
],
|
| 172 |
+
[
|
| 173 |
+
"http://images.cocodataset.org/val2017/000000029369.jpg",
|
| 174 |
+
"dog"
|
| 175 |
+
]
|
| 176 |
+
]
|
| 177 |
+
gr.Examples(
|
| 178 |
+
examples=examples,
|
| 179 |
+
inputs=[image_input, text_input],
|
| 180 |
+
fn=segment,
|
| 181 |
+
outputs=[image_output, info_output],
|
| 182 |
+
cache_examples=True,
|
| 183 |
+
examples_per_page=10,
|
| 184 |
+
label="Try these COCO examples (URLs auto-load)"
|
| 185 |
+
)
|
| 186 |
+
|
| 187 |
+
gr.Markdown(
|
| 188 |
+
"""
|
| 189 |
+
### Notes
|
| 190 |
+
- **Model**: [facebook/sam3](https://huggingface.co/facebook/sam3)
|
| 191 |
+
- Supports natural language prompts like "a red car" or simple nouns.
|
| 192 |
+
- GPU recommended for faster inference.
|
| 193 |
+
- Thresholds control detection sensitivity and mask quality.
|
| 194 |
+
"""
|
| 195 |
+
)
|
| 196 |
+
|
| 197 |
+
if __name__ == "__main__":
|
| 198 |
+
demo.launch(server_name="0.0.0.0", server_port=7860, share=False, debug=True)
|
requirements.txt
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
git+https://github.com/huggingface/transformers
|
| 2 |
+
torch
|
| 3 |
+
torchvision
|
| 4 |
+
torchaudio
|
| 5 |
+
gradio
|
| 6 |
+
matplotlib
|
| 7 |
+
numpy
|
| 8 |
+
Pillow
|
| 9 |
+
accelerate
|
| 10 |
+
tokenizers
|
| 11 |
+
datasets
|
| 12 |
+
requests
|
| 13 |
+
opencv-python
|
| 14 |
+
scipy
|
| 15 |
+
pillow
|
| 16 |
+
imageio
|
| 17 |
+
scikit-image
|
utils.py
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# No additional utility functions needed beyond what's in app.py
|
| 2 |
+
# All helpers (overlay_masks, segment) are defined in app.py for simplicity and global access.
|