Spaces:
Runtime error
Runtime error
Aman Jain
commited on
Commit
·
c8be163
1
Parent(s):
15df868
Initial commit
Browse files- DATA/Telto_Userguide.pdf +0 -0
- app.py +278 -0
- requirements.txt +10 -0
DATA/Telto_Userguide.pdf
ADDED
|
Binary file (542 kB). View file
|
|
|
app.py
ADDED
|
@@ -0,0 +1,278 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
from transformers import AutoTokenizer
|
| 3 |
+
from langchain.docstore.document import Document
|
| 4 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 5 |
+
from langchain.vectorstores import FAISS
|
| 6 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 7 |
+
from langchain_community.vectorstores.utils import DistanceStrategy
|
| 8 |
+
from tqdm import tqdm
|
| 9 |
+
from transformers.agents import Tool, HfApiEngine, ReactJsonAgent
|
| 10 |
+
from huggingface_hub import InferenceClient
|
| 11 |
+
import os
|
| 12 |
+
from langchain_community.document_loaders import DirectoryLoader
|
| 13 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
| 14 |
+
from langchain_groq import ChatGroq
|
| 15 |
+
from groq import Groq
|
| 16 |
+
from typing import List, Dict
|
| 17 |
+
from transformers.agents.llm_engine import MessageRole, get_clean_message_list
|
| 18 |
+
from huggingface_hub import InferenceClient
|
| 19 |
+
import streamlit as st
|
| 20 |
+
|
| 21 |
+
token = os.getenv("HF_TOKEN")
|
| 22 |
+
os.environ["GROQ_API_KEY"] = "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"
|
| 23 |
+
groq_api_key = os.getenv("GROQ_API_KEY")
|
| 24 |
+
|
| 25 |
+
# model_id="mistralai/Mistral-7B-Instruct-v0.3"
|
| 26 |
+
loader = DirectoryLoader('C:/Users/Saket_Sambhu/Documents/Agentic_RAG/DATA', glob="**/*.pdf", show_progress=True)
|
| 27 |
+
docs = loader.load()
|
| 28 |
+
|
| 29 |
+
tokenizer = AutoTokenizer.from_pretrained("thenlper/gte-small")
|
| 30 |
+
text_splitter = RecursiveCharacterTextSplitter.from_huggingface_tokenizer(
|
| 31 |
+
tokenizer,
|
| 32 |
+
chunk_size=200,
|
| 33 |
+
chunk_overlap=20,
|
| 34 |
+
add_start_index=True,
|
| 35 |
+
strip_whitespace=True,
|
| 36 |
+
separators=["\n\n", "\n", ".", " ", ""],
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
# Split documents and remove duplicates
|
| 40 |
+
|
| 41 |
+
docs_processed = []
|
| 42 |
+
unique_texts = {}
|
| 43 |
+
for doc in tqdm(docs):
|
| 44 |
+
new_docs = text_splitter.split_documents([doc])
|
| 45 |
+
for new_doc in new_docs:
|
| 46 |
+
if new_doc.page_content not in unique_texts:
|
| 47 |
+
unique_texts[new_doc.page_content] = True
|
| 48 |
+
docs_processed.append(new_doc)
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
model_name = "thenlper/gte-small"
|
| 52 |
+
model_kwargs = {'device': 'cpu'}
|
| 53 |
+
encode_kwargs = {'normalize_embeddings': False}
|
| 54 |
+
embedding_model = HuggingFaceEmbeddings(
|
| 55 |
+
model_name=model_name,
|
| 56 |
+
model_kwargs=model_kwargs,
|
| 57 |
+
encode_kwargs=encode_kwargs
|
| 58 |
+
)
|
| 59 |
+
|
| 60 |
+
# Create the vector database
|
| 61 |
+
vectordb = FAISS.from_documents(
|
| 62 |
+
documents=docs_processed,
|
| 63 |
+
embedding=embedding_model,
|
| 64 |
+
distance_strategy=DistanceStrategy.COSINE,
|
| 65 |
+
)
|
| 66 |
+
|
| 67 |
+
class RetrieverTool(Tool):
|
| 68 |
+
name = "retriever"
|
| 69 |
+
description = "Using semantic similarity, retrieves some documents from the knowledge base that have the closest embeddings to the input query."
|
| 70 |
+
inputs = {
|
| 71 |
+
"query": {
|
| 72 |
+
"type": "string",
|
| 73 |
+
"description": "The query to perform. This should be semantically close to your target documents. Use the affirmative form rather than a question.",
|
| 74 |
+
}
|
| 75 |
+
}
|
| 76 |
+
output_type = "string"
|
| 77 |
+
|
| 78 |
+
def __init__(self, vectordb, **kwargs):
|
| 79 |
+
super().__init__(**kwargs)
|
| 80 |
+
self.vectordb = vectordb
|
| 81 |
+
|
| 82 |
+
def forward(self, query: str) -> str:
|
| 83 |
+
assert isinstance(query, str), "Your search query must be a string"
|
| 84 |
+
|
| 85 |
+
docs = self.vectordb.similarity_search(
|
| 86 |
+
query,
|
| 87 |
+
k=7,
|
| 88 |
+
)
|
| 89 |
+
|
| 90 |
+
return "\nRetrieved documents:\n" + "".join(
|
| 91 |
+
[f"===== Document {str(i)} =====\n" + doc.page_content for i, doc in enumerate(docs)]
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
# Create an instance of the RetrieverTool
|
| 96 |
+
retriever_tool = RetrieverTool(vectordb)
|
| 97 |
+
|
| 98 |
+
llm = ChatGroq(
|
| 99 |
+
model="llama3-70b-8192",
|
| 100 |
+
temperature=0,
|
| 101 |
+
max_tokens=2048,
|
| 102 |
+
)
|
| 103 |
+
|
| 104 |
+
openai_role_conversions = {
|
| 105 |
+
MessageRole.TOOL_RESPONSE: MessageRole.USER,
|
| 106 |
+
}
|
| 107 |
+
|
| 108 |
+
class OpenAIEngine:
|
| 109 |
+
def __init__(self, model_name="llama-3.3-70b-versatile"):
|
| 110 |
+
print(groq_api_key)
|
| 111 |
+
self.model_name = model_name
|
| 112 |
+
self.client = Groq(
|
| 113 |
+
api_key=groq_api_key,
|
| 114 |
+
)
|
| 115 |
+
|
| 116 |
+
def __call__(self, messages, stop_sequences=[]):
|
| 117 |
+
messages = get_clean_message_list(messages, role_conversions=openai_role_conversions)
|
| 118 |
+
|
| 119 |
+
response = self.client.chat.completions.create(
|
| 120 |
+
model=self.model_name,
|
| 121 |
+
messages=messages,
|
| 122 |
+
stop=stop_sequences,
|
| 123 |
+
temperature=0.5,
|
| 124 |
+
max_tokens=2048
|
| 125 |
+
)
|
| 126 |
+
return response.choices[0].message.content
|
| 127 |
+
|
| 128 |
+
llm_engine = OpenAIEngine()
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
# Create the agent
|
| 132 |
+
agent = ReactJsonAgent(tools=[retriever_tool], llm_engine=llm_engine, max_iterations=4, verbose=2)
|
| 133 |
+
|
| 134 |
+
# Function to run the agent
|
| 135 |
+
def run_agentic_rag(question: str) -> str:
|
| 136 |
+
enhanced_question = f"""Using the information contained in your knowledge base, which you can access with the 'retriever' tool,
|
| 137 |
+
give a comprehensive answer to the question below.
|
| 138 |
+
Respond only to the question asked, response should be concise and relevant to the question.
|
| 139 |
+
If you cannot find information, do not give up and try calling your retriever again with different arguments!
|
| 140 |
+
Make sure to have covered the question completely by calling the retriever tool several times with semantically different queries.
|
| 141 |
+
Your queries should not be questions but affirmative form sentences: e.g. rather than "How do I load a model from the Hub in bf16?", query should be "load a model from the Hub bf16 weights".
|
| 142 |
+
|
| 143 |
+
Question:
|
| 144 |
+
{question}"""
|
| 145 |
+
|
| 146 |
+
return agent.run(enhanced_question)
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
# def get_llm_hf_inference(model_id=model_id, max_new_tokens=128, temperature=0.1):
|
| 150 |
+
# """
|
| 151 |
+
# Returns a language model for HuggingFace inference.
|
| 152 |
+
|
| 153 |
+
# Parameters:
|
| 154 |
+
# - model_id (str): The ID of the HuggingFace model repository.
|
| 155 |
+
# - max_new_tokens (int): The maximum number of new tokens to generate.
|
| 156 |
+
# - temperature (float): The temperature for sampling from the model.
|
| 157 |
+
|
| 158 |
+
# Returns:
|
| 159 |
+
# - llm (HuggingFaceEndpoint): The language model for HuggingFace inference.
|
| 160 |
+
# """
|
| 161 |
+
# llm = HuggingFaceEndpoint(
|
| 162 |
+
# repo_id=model_id,
|
| 163 |
+
# max_new_tokens=max_new_tokens,
|
| 164 |
+
# temperature=temperature,
|
| 165 |
+
# token = os.getenv("HF_TOKEN")
|
| 166 |
+
# )
|
| 167 |
+
# return llm
|
| 168 |
+
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
|
| 173 |
+
|
| 174 |
+
def get_response(chat_history, user_text):
|
| 175 |
+
"""
|
| 176 |
+
Generates a response from the chatbot model.
|
| 177 |
+
|
| 178 |
+
Args:
|
| 179 |
+
system_message (str): The system message for the conversation.
|
| 180 |
+
chat_history (list): The list of previous chat messages.
|
| 181 |
+
user_text (str): The user's input text.
|
| 182 |
+
model_id (str, optional): The ID of the HuggingFace model to use.
|
| 183 |
+
eos_token_id (list, optional): The list of end-of-sentence token IDs.
|
| 184 |
+
max_new_tokens (int, optional): The maximum number of new tokens to generate.
|
| 185 |
+
get_llm_hf_kws (dict, optional): Additional keyword arguments for the get_llm_hf function.
|
| 186 |
+
|
| 187 |
+
Returns:
|
| 188 |
+
tuple: A tuple containing the generated response and the updated chat history.
|
| 189 |
+
"""
|
| 190 |
+
|
| 191 |
+
# Update the chat history
|
| 192 |
+
chat_history.append({'role': 'user', 'content': user_text})
|
| 193 |
+
chat_history.append({'role': 'assistant', 'content': run_agentic_rag(user_text)})
|
| 194 |
+
return run_agentic_rag(user_text), chat_history
|
| 195 |
+
|
| 196 |
+
|
| 197 |
+
st.set_page_config(page_title="Hi, I am Telto assistant", page_icon="🤗")
|
| 198 |
+
st.title("Telto Support")
|
| 199 |
+
st.markdown(f"*This is telto assistant. For any guidance on how to use Telto, feel free to ask me.*")
|
| 200 |
+
|
| 201 |
+
# Initialize session state for avatars
|
| 202 |
+
if "avatars" not in st.session_state:
|
| 203 |
+
st.session_state.avatars = {'user': None, 'assistant': None}
|
| 204 |
+
|
| 205 |
+
# Initialize session state for user text input
|
| 206 |
+
if 'user_text' not in st.session_state:
|
| 207 |
+
st.session_state.user_text = None
|
| 208 |
+
|
| 209 |
+
if "system_message" not in st.session_state:
|
| 210 |
+
st.session_state.system_message = "friendly AI conversing with a human user"
|
| 211 |
+
|
| 212 |
+
if "starter_message" not in st.session_state:
|
| 213 |
+
st.session_state.starter_message = "Hello, there! How can I help you today?"
|
| 214 |
+
|
| 215 |
+
# Sidebar for settings
|
| 216 |
+
with st.sidebar:
|
| 217 |
+
st.header("System Settings")
|
| 218 |
+
|
| 219 |
+
# Avatar Selection
|
| 220 |
+
st.markdown("*Select Avatars:*")
|
| 221 |
+
col1, col2 = st.columns(2)
|
| 222 |
+
with col1:
|
| 223 |
+
st.session_state.avatars['assistant'] = st.selectbox(
|
| 224 |
+
"AI Avatar", options=["🤗", "💬", "🤖"], index=0
|
| 225 |
+
)
|
| 226 |
+
with col2:
|
| 227 |
+
st.session_state.avatars['user'] = st.selectbox(
|
| 228 |
+
"User Avatar", options=["👤", "👱♂️", "👨🏾", "👩", "👧🏾"], index=0
|
| 229 |
+
)
|
| 230 |
+
# Reset Chat History
|
| 231 |
+
reset_history = st.button("Reset Chat History")
|
| 232 |
+
|
| 233 |
+
# Initialize or reset chat history
|
| 234 |
+
if "chat_history" not in st.session_state or reset_history:
|
| 235 |
+
st.session_state.chat_history = [{"role": "assistant", "content": st.session_state.starter_message}]
|
| 236 |
+
# Chat interface
|
| 237 |
+
|
| 238 |
+
|
| 239 |
+
chat_interface = st.container(border=True)
|
| 240 |
+
with chat_interface:
|
| 241 |
+
output_container = st.container()
|
| 242 |
+
st.session_state.user_text = st.chat_input(placeholder="Enter your text here.")
|
| 243 |
+
|
| 244 |
+
# Display chat messages
|
| 245 |
+
with output_container:
|
| 246 |
+
# For every message in the history
|
| 247 |
+
for message in st.session_state.chat_history:
|
| 248 |
+
# Skip the system message
|
| 249 |
+
if message['role'] == 'system':
|
| 250 |
+
continue
|
| 251 |
+
|
| 252 |
+
# Display the chat message using the correct avatar
|
| 253 |
+
with st.chat_message(message['role'],
|
| 254 |
+
avatar=st.session_state['avatars'][message['role']]):
|
| 255 |
+
st.markdown(message['content'])
|
| 256 |
+
|
| 257 |
+
# When the user enter new text:
|
| 258 |
+
if st.session_state.user_text:
|
| 259 |
+
|
| 260 |
+
# Display the user's new message immediately
|
| 261 |
+
with st.chat_message("user",
|
| 262 |
+
avatar=st.session_state.avatars['user']):
|
| 263 |
+
st.markdown(st.session_state.user_text)
|
| 264 |
+
|
| 265 |
+
# Display a spinner status bar while waiting for the response
|
| 266 |
+
with st.chat_message("assistant",
|
| 267 |
+
avatar=st.session_state.avatars['assistant']):
|
| 268 |
+
|
| 269 |
+
with st.spinner("Thinking..."):
|
| 270 |
+
# Call the Inference API with the system_prompt, user text, and history
|
| 271 |
+
|
| 272 |
+
|
| 273 |
+
response, st.session_state.chat_history = get_response(
|
| 274 |
+
user_text=st.session_state.user_text,
|
| 275 |
+
chat_history=st.session_state.chat_history,
|
| 276 |
+
)
|
| 277 |
+
st.markdown(response)
|
| 278 |
+
|
requirements.txt
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
transformers
|
| 2 |
+
langchain
|
| 3 |
+
langchain-community
|
| 4 |
+
sentence-transformers
|
| 5 |
+
faiss-cpu
|
| 6 |
+
groq
|
| 7 |
+
langchain-groq
|
| 8 |
+
unstructured
|
| 9 |
+
"unstructured[pdf]"
|
| 10 |
+
langchain-huggingface
|