""" VibeVoice Streaming model configuration""" from transformers.configuration_utils import PretrainedConfig from transformers.utils import logging from transformers.models.qwen2.configuration_qwen2 import Qwen2Config from .configuration_vibevoice import VibeVoiceAcousticTokenizerConfig, VibeVoiceDiffusionHeadConfig logger = logging.get_logger(__name__) class VibeVoiceStreamingConfig(PretrainedConfig): model_type = "vibevoice_streaming" is_composition = True sub_configs = { "acoustic_tokenizer_config": VibeVoiceAcousticTokenizerConfig, "decoder_config": Qwen2Config, "diffusion_head_config": VibeVoiceDiffusionHeadConfig, } # keys_to_ignore_at_inference = ["past_key_values"] # Default tensor parallel plan for base model `Qwen2` base_model_tp_plan = { "layers.*.self_attn.q_proj": "colwise", "layers.*.self_attn.k_proj": "colwise", "layers.*.self_attn.v_proj": "colwise", "layers.*.self_attn.o_proj": "rowwise", "layers.*.mlp.gate_proj": "colwise", "layers.*.mlp.up_proj": "colwise", "layers.*.mlp.down_proj": "rowwise", } def __init__( self, acoustic_tokenizer_config=None, decoder_config=None, diffusion_head_config=None, tts_backbone_num_hidden_layers=20, **kwargs ): # kwargs["_attn_implementation"] = "flash_attention_2" kwargs["_attn_implementation_autoset"] = False if acoustic_tokenizer_config is None: self.acoustic_tokenizer_config = self.sub_configs["acoustic_tokenizer_config"]() elif isinstance(acoustic_tokenizer_config, dict): acoustic_tokenizer_config["model_type"] = "vibevoice_acoustic_tokenizer" self.acoustic_tokenizer_config = self.sub_configs["acoustic_tokenizer_config"](**acoustic_tokenizer_config) elif isinstance(acoustic_tokenizer_config, VibeVoiceAcousticTokenizerConfig): # If an instance of the config class is provided self.acoustic_tokenizer_config = acoustic_tokenizer_config if decoder_config is None: self.decoder_config = self.sub_configs["decoder_config"]() elif isinstance(decoder_config, dict): # If a dictionary is provided, instantiate the config class with it # self.decoder_config = self.sub_configs["decoder_config"](**decoder_config) if decoder_config.get("model_type", '') == "qwen2": self.decoder_config = Qwen2Config(**decoder_config) else: raise ValueError(f"Unsupported decoder model type: {decoder_config.get('model_type', '')}") elif isinstance(decoder_config, (Qwen2Config,)): # If an instance of the config class is provided self.decoder_config = decoder_config if diffusion_head_config is None: self.diffusion_head_config = self.sub_configs["diffusion_head_config"]() elif isinstance(diffusion_head_config, dict): diffusion_head_config["model_type"] = "vibevoice_diffusion_head" self.diffusion_head_config = self.sub_configs["diffusion_head_config"](**diffusion_head_config) elif isinstance(diffusion_head_config, VibeVoiceDiffusionHeadConfig): # If an instance of the config class is provided self.diffusion_head_config = diffusion_head_config # other parameters self.acoustic_vae_dim = getattr(self.acoustic_tokenizer_config, 'vae_dim', 64) # The decoder of the model is divided into two components. The lower Transformer layers are only used for encoding text, while the upper Transformer layers are used for encoding text and generating speech. `tts_backbone_num_hidden_layers` indicates the number of upper layers used for TTS. self.tts_backbone_num_hidden_layers = tts_backbone_num_hidden_layers super().__init__(**kwargs) __all__ = [ "VibeVoiceStreamingConfig" ]