Spaces:
Sleeping
Sleeping
Create data_setup.py
Browse files- data_setup.py +85 -0
data_setup.py
ADDED
|
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import fitz
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import faiss
|
| 4 |
+
import pickle
|
| 5 |
+
from sentence_transformers import SentenceTransformer
|
| 6 |
+
import torch
|
| 7 |
+
|
| 8 |
+
def setup_knowledge_base(pdf_file_part_1, pdf_file_part_2, model_name='paraphrase-multilingual-mpnet-base-v2'):
|
| 9 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 10 |
+
|
| 11 |
+
def _extract_text_with_page_number(pdf_path):
|
| 12 |
+
doc = fitz.open(pdf_path)
|
| 13 |
+
content = []
|
| 14 |
+
for page_num in range(doc.page_count):
|
| 15 |
+
page = doc.load_page(page_num)
|
| 16 |
+
text = page.get_text("text")
|
| 17 |
+
content.append({
|
| 18 |
+
'page_number': page_num + 1,
|
| 19 |
+
'text': text
|
| 20 |
+
})
|
| 21 |
+
return content
|
| 22 |
+
|
| 23 |
+
def _create_chunks(df):
|
| 24 |
+
chunks = []
|
| 25 |
+
current_chunk = ""
|
| 26 |
+
current_page_numbers = []
|
| 27 |
+
for index, row in df.iterrows():
|
| 28 |
+
page_number = row['page_number']
|
| 29 |
+
text = row['text']
|
| 30 |
+
paragraphs = text.split('\n\n')
|
| 31 |
+
for para in paragraphs:
|
| 32 |
+
if para.strip():
|
| 33 |
+
is_new_section = any(header in para for header in [
|
| 34 |
+
'第一章', '第二章', '第三章', '第四章', '第五章',
|
| 35 |
+
'第六章', '第七章', '第八章', '第九章', '第十章',
|
| 36 |
+
'第十一章', '第十二章', '第十三章', '第十四章', '第十五章', '第十六章'
|
| 37 |
+
])
|
| 38 |
+
if is_new_section and current_chunk:
|
| 39 |
+
chunks.append({
|
| 40 |
+
'content': current_chunk.strip(),
|
| 41 |
+
'page_numbers': sorted(list(set(current_page_numbers)))
|
| 42 |
+
})
|
| 43 |
+
current_chunk = para
|
| 44 |
+
current_page_numbers = [page_number]
|
| 45 |
+
else:
|
| 46 |
+
current_chunk += "\n" + para
|
| 47 |
+
if page_number not in current_page_numbers:
|
| 48 |
+
current_page_numbers.append(page_number)
|
| 49 |
+
if current_chunk:
|
| 50 |
+
chunks.append({
|
| 51 |
+
'content': current_chunk.strip(),
|
| 52 |
+
'page_numbers': sorted(list(set(current_page_numbers)))
|
| 53 |
+
})
|
| 54 |
+
return chunks
|
| 55 |
+
|
| 56 |
+
print("--- 步驟一:提取PDF內容 ---")
|
| 57 |
+
book_content_part_1 = _extract_text_with_page_number(pdf_file_part_1)
|
| 58 |
+
book_content_part_2 = _extract_text_with_page_number(pdf_file_part_2)
|
| 59 |
+
all_book_content = book_content_part_1 + book_content_part_2
|
| 60 |
+
df = pd.DataFrame(all_book_content)
|
| 61 |
+
|
| 62 |
+
print("--- 步驟二:切分語塊 ---")
|
| 63 |
+
chunks = _create_chunks(df)
|
| 64 |
+
print(f"總共產生了 {len(chunks)} 個語塊。")
|
| 65 |
+
|
| 66 |
+
print("--- 步驟三:將語塊向量化並建立FAISS索引 ---")
|
| 67 |
+
retriever_model = SentenceTransformer(model_name, device=device)
|
| 68 |
+
texts = [chunk['content'] for chunk in chunks]
|
| 69 |
+
embeddings = retriever_model.encode(texts, convert_to_tensor=True).cpu().numpy()
|
| 70 |
+
d = embeddings.shape[1]
|
| 71 |
+
index = faiss.IndexFlatL2(d)
|
| 72 |
+
index.add(embeddings)
|
| 73 |
+
|
| 74 |
+
# 儲存FAISS索引和語塊資訊
|
| 75 |
+
faiss.write_index(index, 'faiss_index.bin')
|
| 76 |
+
with open('chunks.pkl', 'wb') as f:
|
| 77 |
+
pickle.dump(chunks, f)
|
| 78 |
+
|
| 79 |
+
print("知識庫建立成功!")
|
| 80 |
+
return 'faiss_index.bin', 'chunks.pkl'
|
| 81 |
+
|
| 82 |
+
if __name__ == '__main__':
|
| 83 |
+
pdf_file_part_1 = '噶哈巫語參考語法(上).pdf'
|
| 84 |
+
pdf_file_part_2 = '噶哈巫語參考語法(下).pdf'
|
| 85 |
+
setup_knowledge_base(pdf_file_part_1, pdf_file_part_2)
|