Spaces:
Sleeping
Sleeping
File size: 1,972 Bytes
ed89c53 df9d6e6 ed89c53 77c3f4a ed89c53 df9d6e6 ed89c53 df9d6e6 ed89c53 2396173 ed89c53 2396173 ed89c53 2396173 77c3f4a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
---
title: Stroke Classification
emoji: π
colorFrom: red
colorTo: red
sdk: docker
app_port: 7860
tags:
- streamlit
pinned: false
short_description: Streamlit template space
license: apache-2.0
---
# π§ Stroke Classification System
**Status**: Dependency-conflict-free Streamlit app for stroke classification.
## π Features
- **Clean Dependencies**: No version conflicts
- **System Status Check**: Visual indicators for all components
- **Fast Loading**: Optimized for Hugging Face Spaces
- **Error Handling**: Graceful fallbacks for missing dependencies
- **Medical Interface**: Professional design
## π Usage
1. Upload your `.h5` model file to the Files tab
2. Click "Load Model" in the app
3. Upload brain scan images for classification
4. View results with confidence scores
## π§ Technical
- **Framework**: Streamlit (conflict-free)
- **ML**: TensorFlow 2.13.0 with pinned dependencies
- **Visualization**: Matplotlib-based heatmaps
- **Deployment**: Optimized for HF Spaces
---
**Version**: Dependency-conflict-free release
```
And here's your updated Dockerfile to match the port:
```dockerfile type="code" file="Dockerfile"
FROM python:3.9-slim
WORKDIR /app
# Set environment variables for Streamlit
ENV HOME=/tmp
ENV STREAMLIT_SERVER_HEADLESS=true
ENV STREAMLIT_SERVER_ENABLE_CORS=false
ENV STREAMLIT_SERVER_ENABLE_XSRF_PROTECTION=false
ENV STREAMLIT_BROWSER_GATHER_USAGE_STATS=false
ENV STREAMLIT_GLOBAL_DEVELOPMENT_MODE=false
RUN apt-get update && apt-get install -y \
build-essential \
curl \
software-properties-common \
git \
&& rm -rf /var/lib/apt/lists/*
COPY requirements.txt ./
COPY src/ ./src/
RUN pip3 install -r requirements.txt
# Create streamlit config directory in the temporary home
RUN mkdir -p /tmp/.streamlit
EXPOSE 7860
HEALTHCHECK CMD curl --fail http://localhost:7860/_stcore/health
ENTRYPOINT ["streamlit", "run", "src/streamlit_app.py", "--server.port=7860", "--server.address=0.0.0.0"] |