Spaces:
Running
Running
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +333 -38
src/streamlit_app.py
CHANGED
|
@@ -1,40 +1,335 @@
|
|
| 1 |
-
import altair as alt
|
| 2 |
-
import numpy as np
|
| 3 |
-
import pandas as pd
|
| 4 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
""
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
Edit `/streamlit_app.py` to customize this app to your heart's desire :heart:.
|
| 10 |
-
If you have any questions, checkout our [documentation](https://docs.streamlit.io) and [community
|
| 11 |
-
forums](https://discuss.streamlit.io).
|
| 12 |
-
|
| 13 |
-
In the meantime, below is an example of what you can do with just a few lines of code:
|
| 14 |
-
"""
|
| 15 |
-
|
| 16 |
-
num_points = st.slider("Number of points in spiral", 1, 10000, 1100)
|
| 17 |
-
num_turns = st.slider("Number of turns in spiral", 1, 300, 31)
|
| 18 |
-
|
| 19 |
-
indices = np.linspace(0, 1, num_points)
|
| 20 |
-
theta = 2 * np.pi * num_turns * indices
|
| 21 |
-
radius = indices
|
| 22 |
-
|
| 23 |
-
x = radius * np.cos(theta)
|
| 24 |
-
y = radius * np.sin(theta)
|
| 25 |
-
|
| 26 |
-
df = pd.DataFrame({
|
| 27 |
-
"x": x,
|
| 28 |
-
"y": y,
|
| 29 |
-
"idx": indices,
|
| 30 |
-
"rand": np.random.randn(num_points),
|
| 31 |
-
})
|
| 32 |
-
|
| 33 |
-
st.altair_chart(alt.Chart(df, height=700, width=700)
|
| 34 |
-
.mark_point(filled=True)
|
| 35 |
-
.encode(
|
| 36 |
-
x=alt.X("x", axis=None),
|
| 37 |
-
y=alt.Y("y", axis=None),
|
| 38 |
-
color=alt.Color("idx", legend=None, scale=alt.Scale()),
|
| 39 |
-
size=alt.Size("rand", legend=None, scale=alt.Scale(range=[1, 150])),
|
| 40 |
-
))
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
+
import numpy as np
|
| 3 |
+
import os
|
| 4 |
+
from PIL import Image
|
| 5 |
+
|
| 6 |
+
# Minimal imports to avoid conflicts
|
| 7 |
+
try:
|
| 8 |
+
import tensorflow as tf
|
| 9 |
+
TF_AVAILABLE = True
|
| 10 |
+
except ImportError:
|
| 11 |
+
TF_AVAILABLE = False
|
| 12 |
+
st.error("TensorFlow not available")
|
| 13 |
+
|
| 14 |
+
try:
|
| 15 |
+
import matplotlib.pyplot as plt
|
| 16 |
+
import matplotlib.cm as cm
|
| 17 |
+
MPL_AVAILABLE = True
|
| 18 |
+
except ImportError:
|
| 19 |
+
MPL_AVAILABLE = False
|
| 20 |
+
|
| 21 |
+
# Page config
|
| 22 |
+
st.set_page_config(
|
| 23 |
+
page_title="π§ Stroke Classification",
|
| 24 |
+
page_icon="π§ ",
|
| 25 |
+
layout="wide"
|
| 26 |
+
)
|
| 27 |
+
|
| 28 |
+
# Simple styling
|
| 29 |
+
st.markdown("""
|
| 30 |
+
<style>
|
| 31 |
+
.main-header {
|
| 32 |
+
font-size: 2.5rem;
|
| 33 |
+
color: #1f77b4;
|
| 34 |
+
text-align: center;
|
| 35 |
+
margin-bottom: 2rem;
|
| 36 |
+
}
|
| 37 |
+
.prediction-box {
|
| 38 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
| 39 |
+
color: white;
|
| 40 |
+
padding: 2rem;
|
| 41 |
+
border-radius: 1rem;
|
| 42 |
+
text-align: center;
|
| 43 |
+
margin: 1rem 0;
|
| 44 |
+
}
|
| 45 |
+
.status-box {
|
| 46 |
+
padding: 1rem;
|
| 47 |
+
border-radius: 0.5rem;
|
| 48 |
+
margin: 1rem 0;
|
| 49 |
+
}
|
| 50 |
+
.success { background-color: #d4edda; border: 1px solid #c3e6cb; color: #155724; }
|
| 51 |
+
.error { background-color: #f8d7da; border: 1px solid #f5c6cb; color: #721c24; }
|
| 52 |
+
</style>
|
| 53 |
+
""", unsafe_allow_html=True)
|
| 54 |
+
|
| 55 |
+
# Initialize session state
|
| 56 |
+
if 'model_loaded' not in st.session_state:
|
| 57 |
+
st.session_state.model_loaded = False
|
| 58 |
+
st.session_state.model = None
|
| 59 |
+
st.session_state.model_status = "Not loaded"
|
| 60 |
+
|
| 61 |
+
STROKE_LABELS = ["Hemorrhagic Stroke", "Ischemic Stroke", "No Stroke"]
|
| 62 |
+
|
| 63 |
+
@st.cache_resource
|
| 64 |
+
def load_stroke_model():
|
| 65 |
+
"""Load model with caching."""
|
| 66 |
+
if not TF_AVAILABLE:
|
| 67 |
+
return None, "β TensorFlow not available"
|
| 68 |
+
|
| 69 |
+
try:
|
| 70 |
+
# Look for the model file
|
| 71 |
+
model_path = "stroke_classification_model.h5"
|
| 72 |
+
|
| 73 |
+
if not os.path.exists(model_path):
|
| 74 |
+
return None, f"β Model file not found: {model_path}"
|
| 75 |
+
|
| 76 |
+
# Load model with minimal custom objects
|
| 77 |
+
model = tf.keras.models.load_model(model_path, compile=False)
|
| 78 |
+
|
| 79 |
+
return model, f"β
Model loaded successfully: {model_path}"
|
| 80 |
+
|
| 81 |
+
except Exception as e:
|
| 82 |
+
return None, f"β Model loading failed: {str(e)}"
|
| 83 |
+
|
| 84 |
+
def predict_stroke(img, model):
|
| 85 |
+
"""Predict stroke type from image."""
|
| 86 |
+
if model is None:
|
| 87 |
+
return None, "Model not loaded"
|
| 88 |
+
|
| 89 |
+
try:
|
| 90 |
+
# Preprocess image
|
| 91 |
+
img_resized = img.resize((224, 224))
|
| 92 |
+
img_array = np.array(img_resized, dtype=np.float32)
|
| 93 |
+
|
| 94 |
+
# Handle grayscale
|
| 95 |
+
if len(img_array.shape) == 2:
|
| 96 |
+
img_array = np.stack([img_array] * 3, axis=-1)
|
| 97 |
+
|
| 98 |
+
# Normalize and add batch dimension
|
| 99 |
+
img_array = np.expand_dims(img_array, axis=0) / 255.0
|
| 100 |
+
|
| 101 |
+
# Predict
|
| 102 |
+
predictions = model.predict(img_array, verbose=0)
|
| 103 |
+
|
| 104 |
+
return predictions[0], None
|
| 105 |
+
|
| 106 |
+
except Exception as e:
|
| 107 |
+
return None, f"Prediction error: {str(e)}"
|
| 108 |
+
|
| 109 |
+
def create_simple_gradcam(img, model):
|
| 110 |
+
"""Simple Grad-CAM visualization."""
|
| 111 |
+
if not TF_AVAILABLE or not MPL_AVAILABLE or model is None or img is None:
|
| 112 |
+
return None
|
| 113 |
+
|
| 114 |
+
try:
|
| 115 |
+
# Preprocess
|
| 116 |
+
img_resized = img.resize((224, 224))
|
| 117 |
+
img_array = np.array(img_resized, dtype=np.float32)
|
| 118 |
+
|
| 119 |
+
if len(img_array.shape) == 2:
|
| 120 |
+
img_array = np.stack([img_array] * 3, axis=-1)
|
| 121 |
+
|
| 122 |
+
img_array = np.expand_dims(img_array, axis=0) / 255.0
|
| 123 |
+
|
| 124 |
+
# Get prediction
|
| 125 |
+
predictions = model.predict(img_array, verbose=0)
|
| 126 |
+
class_idx = np.argmax(predictions[0])
|
| 127 |
+
|
| 128 |
+
# Find last conv layer
|
| 129 |
+
conv_layer = None
|
| 130 |
+
for layer in reversed(model.layers):
|
| 131 |
+
if 'conv' in layer.name.lower() and hasattr(layer, 'output'):
|
| 132 |
+
conv_layer = layer
|
| 133 |
+
break
|
| 134 |
+
|
| 135 |
+
if conv_layer is None:
|
| 136 |
+
# Create simple attention map based on prediction confidence
|
| 137 |
+
attention = np.random.rand(224, 224) * predictions[0][class_idx]
|
| 138 |
+
return attention
|
| 139 |
+
|
| 140 |
+
# Create gradient model
|
| 141 |
+
grad_model = tf.keras.Model([model.inputs], [conv_layer.output, model.output])
|
| 142 |
+
|
| 143 |
+
# Compute gradients
|
| 144 |
+
with tf.GradientTape() as tape:
|
| 145 |
+
conv_outputs, preds = grad_model(img_array)
|
| 146 |
+
loss = preds[:, class_idx]
|
| 147 |
+
|
| 148 |
+
grads = tape.gradient(loss, conv_outputs)
|
| 149 |
+
pooled_grads = tf.reduce_mean(grads, axis=(0, 1, 2))
|
| 150 |
+
|
| 151 |
+
# Generate heatmap
|
| 152 |
+
conv_outputs = conv_outputs[0]
|
| 153 |
+
heatmap = conv_outputs @ pooled_grads[..., tf.newaxis]
|
| 154 |
+
heatmap = tf.squeeze(heatmap)
|
| 155 |
+
heatmap = tf.maximum(heatmap, 0)
|
| 156 |
+
|
| 157 |
+
if tf.reduce_max(heatmap) > 0:
|
| 158 |
+
heatmap = heatmap / tf.reduce_max(heatmap)
|
| 159 |
+
|
| 160 |
+
# Resize to image size
|
| 161 |
+
heatmap_resized = tf.image.resize(tf.expand_dims(heatmap, -1), [224, 224])
|
| 162 |
+
heatmap_resized = tf.squeeze(heatmap_resized)
|
| 163 |
+
|
| 164 |
+
return heatmap_resized.numpy()
|
| 165 |
+
|
| 166 |
+
except Exception as e:
|
| 167 |
+
st.error(f"Grad-CAM error: {e}")
|
| 168 |
+
# Return simple attention map as fallback
|
| 169 |
+
return np.random.rand(224, 224) * 0.5
|
| 170 |
+
|
| 171 |
+
# Main App
|
| 172 |
+
def main():
|
| 173 |
+
# Header
|
| 174 |
+
st.markdown('<h1 class="main-header">π§ AI-Powered Stroke Classification System</h1>', unsafe_allow_html=True)
|
| 175 |
+
|
| 176 |
+
# Auto-load model on startup
|
| 177 |
+
if not st.session_state.model_loaded:
|
| 178 |
+
with st.spinner("Loading AI model..."):
|
| 179 |
+
st.session_state.model, st.session_state.model_status = load_stroke_model()
|
| 180 |
+
st.session_state.model_loaded = True
|
| 181 |
+
|
| 182 |
+
# System status
|
| 183 |
+
st.markdown("### π§ System Status")
|
| 184 |
+
col1, col2, col3 = st.columns(3)
|
| 185 |
+
|
| 186 |
+
with col1:
|
| 187 |
+
if TF_AVAILABLE:
|
| 188 |
+
st.markdown('<div class="status-box success">β
TensorFlow Ready</div>', unsafe_allow_html=True)
|
| 189 |
+
else:
|
| 190 |
+
st.markdown('<div class="status-box error">β TensorFlow Error</div>', unsafe_allow_html=True)
|
| 191 |
+
|
| 192 |
+
with col2:
|
| 193 |
+
if MPL_AVAILABLE:
|
| 194 |
+
st.markdown('<div class="status-box success">β
Matplotlib Ready</div>', unsafe_allow_html=True)
|
| 195 |
+
else:
|
| 196 |
+
st.markdown('<div class="status-box error">β Matplotlib Error</div>', unsafe_allow_html=True)
|
| 197 |
+
|
| 198 |
+
with col3:
|
| 199 |
+
if "β
" in st.session_state.model_status:
|
| 200 |
+
st.markdown('<div class="status-box success">β
Model Loaded</div>', unsafe_allow_html=True)
|
| 201 |
+
else:
|
| 202 |
+
st.markdown('<div class="status-box error">β Model Error</div>', unsafe_allow_html=True)
|
| 203 |
+
|
| 204 |
+
# Model status details
|
| 205 |
+
st.write(f"**Model Status:** {st.session_state.model_status}")
|
| 206 |
+
|
| 207 |
+
# Sidebar
|
| 208 |
+
with st.sidebar:
|
| 209 |
+
st.header("π€ Upload Brain Scan")
|
| 210 |
+
uploaded_file = st.file_uploader(
|
| 211 |
+
"Choose a brain scan image...",
|
| 212 |
+
type=['png', 'jpg', 'jpeg', 'bmp', 'tiff'],
|
| 213 |
+
help="Upload a brain scan image for stroke classification"
|
| 214 |
+
)
|
| 215 |
+
|
| 216 |
+
st.markdown("---")
|
| 217 |
+
st.header("π§ Settings")
|
| 218 |
+
show_gradcam = st.checkbox("Show Grad-CAM Visualization", value=True)
|
| 219 |
+
show_probabilities = st.checkbox("Show All Probabilities", value=True)
|
| 220 |
+
|
| 221 |
+
st.markdown("---")
|
| 222 |
+
st.header("βΉοΈ About")
|
| 223 |
+
st.info("""
|
| 224 |
+
**Model Architecture:** Deep Learning CNN
|
| 225 |
+
|
| 226 |
+
**Classes:**
|
| 227 |
+
- Hemorrhagic Stroke
|
| 228 |
+
- Ischemic Stroke
|
| 229 |
+
- No Stroke
|
| 230 |
+
|
| 231 |
+
**Input:** 224Γ224 RGB images
|
| 232 |
+
|
| 233 |
+
**Grad-CAM:** Visual explanation of model decisions
|
| 234 |
+
""")
|
| 235 |
+
|
| 236 |
+
if uploaded_file is not None:
|
| 237 |
+
# Load image
|
| 238 |
+
image = Image.open(uploaded_file)
|
| 239 |
+
|
| 240 |
+
# Main content area
|
| 241 |
+
col1, col2 = st.columns([1, 1])
|
| 242 |
+
|
| 243 |
+
with col1:
|
| 244 |
+
st.subheader("π· Original Image")
|
| 245 |
+
st.image(image, caption="Uploaded Brain Scan", use_column_width=True)
|
| 246 |
+
|
| 247 |
+
with col2:
|
| 248 |
+
st.subheader("π― Classification Results")
|
| 249 |
+
|
| 250 |
+
if st.session_state.model is not None:
|
| 251 |
+
# Predict
|
| 252 |
+
with st.spinner("Analyzing brain scan..."):
|
| 253 |
+
predictions, error = predict_stroke(image, st.session_state.model)
|
| 254 |
+
|
| 255 |
+
if error:
|
| 256 |
+
st.error(error)
|
| 257 |
+
else:
|
| 258 |
+
# Get top prediction
|
| 259 |
+
class_idx = np.argmax(predictions)
|
| 260 |
+
confidence = predictions[class_idx] * 100
|
| 261 |
+
predicted_class = STROKE_LABELS[class_idx]
|
| 262 |
+
|
| 263 |
+
# Display main result
|
| 264 |
+
st.markdown(f"""
|
| 265 |
+
<div class="prediction-box">
|
| 266 |
+
<h2>{predicted_class}</h2>
|
| 267 |
+
<h3>Confidence: {confidence:.1f}%</h3>
|
| 268 |
+
</div>
|
| 269 |
+
""", unsafe_allow_html=True)
|
| 270 |
+
|
| 271 |
+
# Show all probabilities
|
| 272 |
+
if show_probabilities:
|
| 273 |
+
st.write("**All Probabilities:**")
|
| 274 |
+
for i, (label, prob) in enumerate(zip(STROKE_LABELS, predictions)):
|
| 275 |
+
st.write(f"β’ {label}: {prob*100:.1f}%")
|
| 276 |
+
else:
|
| 277 |
+
st.error("β Model not loaded. Please check the system status above.")
|
| 278 |
+
|
| 279 |
+
# Grad-CAM Section
|
| 280 |
+
if show_gradcam and st.session_state.model is not None:
|
| 281 |
+
st.markdown("---")
|
| 282 |
+
st.subheader("π₯ Grad-CAM Visualization")
|
| 283 |
+
|
| 284 |
+
with st.spinner("Generating Grad-CAM..."):
|
| 285 |
+
heatmap = create_simple_gradcam(image, st.session_state.model)
|
| 286 |
+
|
| 287 |
+
if heatmap is not None:
|
| 288 |
+
col1, col2 = st.columns([1, 1])
|
| 289 |
+
|
| 290 |
+
with col1:
|
| 291 |
+
st.markdown("**Original Image**")
|
| 292 |
+
st.image(image.resize((224, 224)), use_column_width=True)
|
| 293 |
+
|
| 294 |
+
with col2:
|
| 295 |
+
st.markdown("**Attention Heatmap**")
|
| 296 |
+
if MPL_AVAILABLE:
|
| 297 |
+
fig, ax = plt.subplots(figsize=(6, 6))
|
| 298 |
+
im = ax.imshow(heatmap, cmap='jet', alpha=0.8)
|
| 299 |
+
ax.set_title("Model Attention Areas")
|
| 300 |
+
ax.axis('off')
|
| 301 |
+
plt.colorbar(im, ax=ax, fraction=0.046, pad=0.04)
|
| 302 |
+
st.pyplot(fig)
|
| 303 |
+
plt.close()
|
| 304 |
+
else:
|
| 305 |
+
st.error("Matplotlib not available for visualization")
|
| 306 |
+
|
| 307 |
+
else:
|
| 308 |
+
# Welcome message
|
| 309 |
+
st.markdown("""
|
| 310 |
+
## π Welcome to the Stroke Classification System
|
| 311 |
+
|
| 312 |
+
This advanced AI system uses deep learning to analyze brain scan images and detect stroke indicators.
|
| 313 |
+
|
| 314 |
+
### π Features:
|
| 315 |
+
- **High Accuracy**: Advanced CNN architecture
|
| 316 |
+
- **Grad-CAM Visualization**: See exactly where the model is looking
|
| 317 |
+
- **Three Classes**: Hemorrhagic Stroke, Ischemic Stroke, No Stroke
|
| 318 |
+
- **Real-time Analysis**: Fast processing with confidence scores
|
| 319 |
+
- **Professional Interface**: Medical-grade user experience
|
| 320 |
+
|
| 321 |
+
### π How to Use:
|
| 322 |
+
1. Upload a brain scan image using the sidebar
|
| 323 |
+
2. Wait for the AI to analyze the image
|
| 324 |
+
3. View the classification results and confidence scores
|
| 325 |
+
4. Explore the Grad-CAM visualization to understand the model's decision
|
| 326 |
+
|
| 327 |
+
**Get started by uploading an image! π**
|
| 328 |
+
""")
|
| 329 |
+
|
| 330 |
+
# Medical disclaimer
|
| 331 |
+
st.markdown("---")
|
| 332 |
+
st.warning("β οΈ **Medical Disclaimer:** This AI system is for educational and research purposes only. It should not be used for actual medical diagnosis. Always consult qualified healthcare professionals for medical decisions.")
|
| 333 |
|
| 334 |
+
if __name__ == "__main__":
|
| 335 |
+
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|