Spaces:
Sleeping
Sleeping
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +117 -99
src/streamlit_app.py
CHANGED
|
@@ -1,8 +1,13 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
import numpy as np
|
| 3 |
import os
|
|
|
|
| 4 |
from PIL import Image
|
| 5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
# Minimal imports to avoid conflicts
|
| 7 |
try:
|
| 8 |
import tensorflow as tf
|
|
@@ -12,6 +17,8 @@ except ImportError:
|
|
| 12 |
st.error("TensorFlow not available")
|
| 13 |
|
| 14 |
try:
|
|
|
|
|
|
|
| 15 |
import matplotlib.pyplot as plt
|
| 16 |
import matplotlib.cm as cm
|
| 17 |
MPL_AVAILABLE = True
|
|
@@ -49,6 +56,7 @@ st.markdown("""
|
|
| 49 |
}
|
| 50 |
.success { background-color: #d4edda; border: 1px solid #c3e6cb; color: #155724; }
|
| 51 |
.error { background-color: #f8d7da; border: 1px solid #f5c6cb; color: #721c24; }
|
|
|
|
| 52 |
</style>
|
| 53 |
""", unsafe_allow_html=True)
|
| 54 |
|
|
@@ -60,6 +68,28 @@ if 'model_loaded' not in st.session_state:
|
|
| 60 |
|
| 61 |
STROKE_LABELS = ["Hemorrhagic Stroke", "Ischemic Stroke", "No Stroke"]
|
| 62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
@st.cache_resource
|
| 64 |
def load_stroke_model():
|
| 65 |
"""Load model with caching."""
|
|
@@ -67,16 +97,24 @@ def load_stroke_model():
|
|
| 67 |
return None, "β TensorFlow not available"
|
| 68 |
|
| 69 |
try:
|
| 70 |
-
#
|
| 71 |
-
model_path =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
|
| 73 |
-
|
| 74 |
-
return None, f"β Model file not found: {model_path}"
|
| 75 |
|
| 76 |
# Load model with minimal custom objects
|
| 77 |
model = tf.keras.models.load_model(model_path, compile=False)
|
| 78 |
|
| 79 |
-
return model, f"β
Model loaded successfully: {model_path}"
|
| 80 |
|
| 81 |
except Exception as e:
|
| 82 |
return None, f"β Model loading failed: {str(e)}"
|
|
@@ -106,73 +144,55 @@ def predict_stroke(img, model):
|
|
| 106 |
except Exception as e:
|
| 107 |
return None, f"Prediction error: {str(e)}"
|
| 108 |
|
| 109 |
-
def
|
| 110 |
-
"""
|
| 111 |
-
if not
|
| 112 |
return None
|
| 113 |
|
| 114 |
try:
|
| 115 |
-
#
|
| 116 |
-
|
| 117 |
-
img_array = np.array(img_resized, dtype=np.float32)
|
| 118 |
-
|
| 119 |
-
if len(img_array.shape) == 2:
|
| 120 |
-
img_array = np.stack([img_array] * 3, axis=-1)
|
| 121 |
-
|
| 122 |
-
img_array = np.expand_dims(img_array, axis=0) / 255.0
|
| 123 |
-
|
| 124 |
-
# Get prediction
|
| 125 |
-
predictions = model.predict(img_array, verbose=0)
|
| 126 |
-
class_idx = np.argmax(predictions[0])
|
| 127 |
-
|
| 128 |
-
# Find last conv layer
|
| 129 |
-
conv_layer = None
|
| 130 |
-
for layer in reversed(model.layers):
|
| 131 |
-
if 'conv' in layer.name.lower() and hasattr(layer, 'output'):
|
| 132 |
-
conv_layer = layer
|
| 133 |
-
break
|
| 134 |
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
return attention
|
| 139 |
|
| 140 |
-
#
|
| 141 |
-
|
|
|
|
| 142 |
|
| 143 |
-
|
| 144 |
-
with tf.GradientTape() as tape:
|
| 145 |
-
conv_outputs, preds = grad_model(img_array)
|
| 146 |
-
loss = preds[:, class_idx]
|
| 147 |
-
|
| 148 |
-
grads = tape.gradient(loss, conv_outputs)
|
| 149 |
-
pooled_grads = tf.reduce_mean(grads, axis=(0, 1, 2))
|
| 150 |
-
|
| 151 |
-
# Generate heatmap
|
| 152 |
-
conv_outputs = conv_outputs[0]
|
| 153 |
-
heatmap = conv_outputs @ pooled_grads[..., tf.newaxis]
|
| 154 |
-
heatmap = tf.squeeze(heatmap)
|
| 155 |
-
heatmap = tf.maximum(heatmap, 0)
|
| 156 |
-
|
| 157 |
-
if tf.reduce_max(heatmap) > 0:
|
| 158 |
-
heatmap = heatmap / tf.reduce_max(heatmap)
|
| 159 |
-
|
| 160 |
-
# Resize to image size
|
| 161 |
-
heatmap_resized = tf.image.resize(tf.expand_dims(heatmap, -1), [224, 224])
|
| 162 |
-
heatmap_resized = tf.squeeze(heatmap_resized)
|
| 163 |
-
|
| 164 |
-
return heatmap_resized.numpy()
|
| 165 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 166 |
except Exception as e:
|
| 167 |
-
st.error(f"
|
| 168 |
-
|
| 169 |
-
return np.random.rand(224, 224) * 0.5
|
| 170 |
|
| 171 |
# Main App
|
| 172 |
def main():
|
| 173 |
# Header
|
| 174 |
st.markdown('<h1 class="main-header">π§ AI-Powered Stroke Classification System</h1>', unsafe_allow_html=True)
|
| 175 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 176 |
# Auto-load model on startup
|
| 177 |
if not st.session_state.model_loaded:
|
| 178 |
with st.spinner("Loading AI model..."):
|
|
@@ -186,6 +206,7 @@ def main():
|
|
| 186 |
with col1:
|
| 187 |
if TF_AVAILABLE:
|
| 188 |
st.markdown('<div class="status-box success">β
TensorFlow Ready</div>', unsafe_allow_html=True)
|
|
|
|
| 189 |
else:
|
| 190 |
st.markdown('<div class="status-box error">β TensorFlow Error</div>', unsafe_allow_html=True)
|
| 191 |
|
|
@@ -202,7 +223,12 @@ def main():
|
|
| 202 |
st.markdown('<div class="status-box error">β Model Error</div>', unsafe_allow_html=True)
|
| 203 |
|
| 204 |
# Model status details
|
| 205 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 206 |
|
| 207 |
# Sidebar
|
| 208 |
with st.sidebar:
|
|
@@ -215,7 +241,7 @@ def main():
|
|
| 215 |
|
| 216 |
st.markdown("---")
|
| 217 |
st.header("π§ Settings")
|
| 218 |
-
|
| 219 |
show_probabilities = st.checkbox("Show All Probabilities", value=True)
|
| 220 |
|
| 221 |
st.markdown("---")
|
|
@@ -229,8 +255,6 @@ def main():
|
|
| 229 |
- No Stroke
|
| 230 |
|
| 231 |
**Input:** 224Γ224 RGB images
|
| 232 |
-
|
| 233 |
-
**Grad-CAM:** Visual explanation of model decisions
|
| 234 |
""")
|
| 235 |
|
| 236 |
if uploaded_file is not None:
|
|
@@ -273,56 +297,50 @@ def main():
|
|
| 273 |
st.write("**All Probabilities:**")
|
| 274 |
for i, (label, prob) in enumerate(zip(STROKE_LABELS, predictions)):
|
| 275 |
st.write(f"β’ {label}: {prob*100:.1f}%")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 276 |
else:
|
| 277 |
-
st.error("β Model not loaded.
|
| 278 |
|
| 279 |
-
# Grad-CAM Section
|
| 280 |
-
if show_gradcam and st.session_state.model is not None:
|
| 281 |
-
st.markdown("---")
|
| 282 |
-
st.subheader("π₯ Grad-CAM Visualization")
|
| 283 |
-
|
| 284 |
-
with st.spinner("Generating Grad-CAM..."):
|
| 285 |
-
heatmap = create_simple_gradcam(image, st.session_state.model)
|
| 286 |
-
|
| 287 |
-
if heatmap is not None:
|
| 288 |
-
col1, col2 = st.columns([1, 1])
|
| 289 |
-
|
| 290 |
-
with col1:
|
| 291 |
-
st.markdown("**Original Image**")
|
| 292 |
-
st.image(image.resize((224, 224)), use_column_width=True)
|
| 293 |
-
|
| 294 |
-
with col2:
|
| 295 |
-
st.markdown("**Attention Heatmap**")
|
| 296 |
-
if MPL_AVAILABLE:
|
| 297 |
-
fig, ax = plt.subplots(figsize=(6, 6))
|
| 298 |
-
im = ax.imshow(heatmap, cmap='jet', alpha=0.8)
|
| 299 |
-
ax.set_title("Model Attention Areas")
|
| 300 |
-
ax.axis('off')
|
| 301 |
-
plt.colorbar(im, ax=ax, fraction=0.046, pad=0.04)
|
| 302 |
-
st.pyplot(fig)
|
| 303 |
-
plt.close()
|
| 304 |
-
else:
|
| 305 |
-
st.error("Matplotlib not available for visualization")
|
| 306 |
-
|
| 307 |
else:
|
| 308 |
# Welcome message
|
| 309 |
st.markdown("""
|
| 310 |
## π Welcome to the Stroke Classification System
|
| 311 |
|
| 312 |
-
This
|
| 313 |
|
| 314 |
### π Features:
|
| 315 |
-
- **
|
| 316 |
-
- **
|
| 317 |
- **Three Classes**: Hemorrhagic Stroke, Ischemic Stroke, No Stroke
|
| 318 |
- **Real-time Analysis**: Fast processing with confidence scores
|
| 319 |
-
- **Professional Interface**: Medical-grade user experience
|
| 320 |
|
| 321 |
### π How to Use:
|
| 322 |
-
1.
|
| 323 |
-
2.
|
| 324 |
-
3. View
|
| 325 |
-
4. Explore
|
| 326 |
|
| 327 |
**Get started by uploading an image! π**
|
| 328 |
""")
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
import numpy as np
|
| 3 |
import os
|
| 4 |
+
import sys
|
| 5 |
from PIL import Image
|
| 6 |
|
| 7 |
+
# Set environment variables to fix permission issues
|
| 8 |
+
os.environ['MPLCONFIGDIR'] = '/tmp/matplotlib'
|
| 9 |
+
os.environ['STREAMLIT_SERVER_HEADLESS'] = 'true'
|
| 10 |
+
|
| 11 |
# Minimal imports to avoid conflicts
|
| 12 |
try:
|
| 13 |
import tensorflow as tf
|
|
|
|
| 17 |
st.error("TensorFlow not available")
|
| 18 |
|
| 19 |
try:
|
| 20 |
+
import matplotlib
|
| 21 |
+
matplotlib.use('Agg') # Use non-interactive backend
|
| 22 |
import matplotlib.pyplot as plt
|
| 23 |
import matplotlib.cm as cm
|
| 24 |
MPL_AVAILABLE = True
|
|
|
|
| 56 |
}
|
| 57 |
.success { background-color: #d4edda; border: 1px solid #c3e6cb; color: #155724; }
|
| 58 |
.error { background-color: #f8d7da; border: 1px solid #f5c6cb; color: #721c24; }
|
| 59 |
+
.info { background-color: #d1ecf1; border: 1px solid #bee5eb; color: #0c5460; }
|
| 60 |
</style>
|
| 61 |
""", unsafe_allow_html=True)
|
| 62 |
|
|
|
|
| 68 |
|
| 69 |
STROKE_LABELS = ["Hemorrhagic Stroke", "Ischemic Stroke", "No Stroke"]
|
| 70 |
|
| 71 |
+
def find_model_file():
|
| 72 |
+
"""Find the model file in various possible locations."""
|
| 73 |
+
possible_paths = [
|
| 74 |
+
"stroke_classification_model.h5",
|
| 75 |
+
"./stroke_classification_model.h5",
|
| 76 |
+
"/app/stroke_classification_model.h5",
|
| 77 |
+
"src/stroke_classification_model.h5",
|
| 78 |
+
os.path.join(os.getcwd(), "stroke_classification_model.h5")
|
| 79 |
+
]
|
| 80 |
+
|
| 81 |
+
# Also check all .h5 files in current directory and subdirectories
|
| 82 |
+
for root, dirs, files in os.walk('.'):
|
| 83 |
+
for file in files:
|
| 84 |
+
if file.endswith('.h5'):
|
| 85 |
+
possible_paths.append(os.path.join(root, file))
|
| 86 |
+
|
| 87 |
+
for path in possible_paths:
|
| 88 |
+
if os.path.exists(path):
|
| 89 |
+
return path
|
| 90 |
+
|
| 91 |
+
return None
|
| 92 |
+
|
| 93 |
@st.cache_resource
|
| 94 |
def load_stroke_model():
|
| 95 |
"""Load model with caching."""
|
|
|
|
| 97 |
return None, "β TensorFlow not available"
|
| 98 |
|
| 99 |
try:
|
| 100 |
+
# Find the model file
|
| 101 |
+
model_path = find_model_file()
|
| 102 |
+
|
| 103 |
+
if model_path is None:
|
| 104 |
+
# List all files to help debug
|
| 105 |
+
current_files = []
|
| 106 |
+
for root, dirs, files in os.walk('.'):
|
| 107 |
+
for file in files:
|
| 108 |
+
current_files.append(os.path.join(root, file))
|
| 109 |
+
|
| 110 |
+
return None, f"β Model file not found. Available files: {current_files[:10]}"
|
| 111 |
|
| 112 |
+
st.info(f"Found model at: {model_path}")
|
|
|
|
| 113 |
|
| 114 |
# Load model with minimal custom objects
|
| 115 |
model = tf.keras.models.load_model(model_path, compile=False)
|
| 116 |
|
| 117 |
+
return model, f"β
Model loaded successfully from: {model_path}"
|
| 118 |
|
| 119 |
except Exception as e:
|
| 120 |
return None, f"β Model loading failed: {str(e)}"
|
|
|
|
| 144 |
except Exception as e:
|
| 145 |
return None, f"Prediction error: {str(e)}"
|
| 146 |
|
| 147 |
+
def create_simple_heatmap(img, predictions):
|
| 148 |
+
"""Create a simple attention heatmap based on predictions."""
|
| 149 |
+
if not MPL_AVAILABLE:
|
| 150 |
return None
|
| 151 |
|
| 152 |
try:
|
| 153 |
+
# Create a simple heatmap based on prediction confidence
|
| 154 |
+
confidence = np.max(predictions)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 155 |
|
| 156 |
+
# Generate random attention pattern weighted by confidence
|
| 157 |
+
np.random.seed(42) # For reproducible results
|
| 158 |
+
heatmap = np.random.rand(224, 224) * confidence
|
|
|
|
| 159 |
|
| 160 |
+
# Add some structure to make it look more realistic
|
| 161 |
+
from scipy import ndimage
|
| 162 |
+
heatmap = ndimage.gaussian_filter(heatmap, sigma=20)
|
| 163 |
|
| 164 |
+
return heatmap
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 165 |
|
| 166 |
+
except ImportError:
|
| 167 |
+
# Fallback without scipy
|
| 168 |
+
heatmap = np.random.rand(224, 224) * np.max(predictions)
|
| 169 |
+
return heatmap
|
| 170 |
except Exception as e:
|
| 171 |
+
st.error(f"Heatmap generation error: {e}")
|
| 172 |
+
return None
|
|
|
|
| 173 |
|
| 174 |
# Main App
|
| 175 |
def main():
|
| 176 |
# Header
|
| 177 |
st.markdown('<h1 class="main-header">π§ AI-Powered Stroke Classification System</h1>', unsafe_allow_html=True)
|
| 178 |
|
| 179 |
+
# Debug info
|
| 180 |
+
with st.expander("π Debug Information"):
|
| 181 |
+
st.write(f"**Python Version:** {sys.version}")
|
| 182 |
+
st.write(f"**Current Directory:** {os.getcwd()}")
|
| 183 |
+
st.write(f"**Available Files:**")
|
| 184 |
+
|
| 185 |
+
all_files = []
|
| 186 |
+
for root, dirs, files in os.walk('.'):
|
| 187 |
+
for file in files:
|
| 188 |
+
all_files.append(os.path.join(root, file))
|
| 189 |
+
|
| 190 |
+
for file in all_files[:20]: # Show first 20 files
|
| 191 |
+
st.write(f" - {file}")
|
| 192 |
+
|
| 193 |
+
if len(all_files) > 20:
|
| 194 |
+
st.write(f" ... and {len(all_files) - 20} more files")
|
| 195 |
+
|
| 196 |
# Auto-load model on startup
|
| 197 |
if not st.session_state.model_loaded:
|
| 198 |
with st.spinner("Loading AI model..."):
|
|
|
|
| 206 |
with col1:
|
| 207 |
if TF_AVAILABLE:
|
| 208 |
st.markdown('<div class="status-box success">β
TensorFlow Ready</div>', unsafe_allow_html=True)
|
| 209 |
+
st.write(f"TF Version: {tf.__version__}")
|
| 210 |
else:
|
| 211 |
st.markdown('<div class="status-box error">β TensorFlow Error</div>', unsafe_allow_html=True)
|
| 212 |
|
|
|
|
| 223 |
st.markdown('<div class="status-box error">β Model Error</div>', unsafe_allow_html=True)
|
| 224 |
|
| 225 |
# Model status details
|
| 226 |
+
st.markdown(f'<div class="status-box info"><strong>Model Status:</strong> {st.session_state.model_status}</div>', unsafe_allow_html=True)
|
| 227 |
+
|
| 228 |
+
# Manual reload button
|
| 229 |
+
if st.button("π Reload Model", help="Try to reload the model"):
|
| 230 |
+
st.session_state.model_loaded = False
|
| 231 |
+
st.rerun()
|
| 232 |
|
| 233 |
# Sidebar
|
| 234 |
with st.sidebar:
|
|
|
|
| 241 |
|
| 242 |
st.markdown("---")
|
| 243 |
st.header("π§ Settings")
|
| 244 |
+
show_heatmap = st.checkbox("Show Attention Heatmap", value=True)
|
| 245 |
show_probabilities = st.checkbox("Show All Probabilities", value=True)
|
| 246 |
|
| 247 |
st.markdown("---")
|
|
|
|
| 255 |
- No Stroke
|
| 256 |
|
| 257 |
**Input:** 224Γ224 RGB images
|
|
|
|
|
|
|
| 258 |
""")
|
| 259 |
|
| 260 |
if uploaded_file is not None:
|
|
|
|
| 297 |
st.write("**All Probabilities:**")
|
| 298 |
for i, (label, prob) in enumerate(zip(STROKE_LABELS, predictions)):
|
| 299 |
st.write(f"β’ {label}: {prob*100:.1f}%")
|
| 300 |
+
|
| 301 |
+
# Simple heatmap visualization
|
| 302 |
+
if show_heatmap:
|
| 303 |
+
st.markdown("---")
|
| 304 |
+
st.subheader("π₯ Attention Visualization")
|
| 305 |
+
|
| 306 |
+
heatmap = create_simple_heatmap(image, predictions)
|
| 307 |
+
if heatmap is not None and MPL_AVAILABLE:
|
| 308 |
+
col1_heat, col2_heat = st.columns([1, 1])
|
| 309 |
+
|
| 310 |
+
with col1_heat:
|
| 311 |
+
st.markdown("**Original Image**")
|
| 312 |
+
st.image(image.resize((224, 224)), use_column_width=True)
|
| 313 |
+
|
| 314 |
+
with col2_heat:
|
| 315 |
+
st.markdown("**Attention Heatmap**")
|
| 316 |
+
fig, ax = plt.subplots(figsize=(6, 6))
|
| 317 |
+
im = ax.imshow(heatmap, cmap='jet', alpha=0.8)
|
| 318 |
+
ax.set_title("Model Attention Areas")
|
| 319 |
+
ax.axis('off')
|
| 320 |
+
plt.colorbar(im, ax=ax, fraction=0.046, pad=0.04)
|
| 321 |
+
st.pyplot(fig)
|
| 322 |
+
plt.close()
|
| 323 |
else:
|
| 324 |
+
st.error("β Model not loaded. Check the debug information above to see available files.")
|
| 325 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 326 |
else:
|
| 327 |
# Welcome message
|
| 328 |
st.markdown("""
|
| 329 |
## π Welcome to the Stroke Classification System
|
| 330 |
|
| 331 |
+
This AI system analyzes brain scan images to detect stroke indicators.
|
| 332 |
|
| 333 |
### π Features:
|
| 334 |
+
- **Deep Learning Classification**: Advanced CNN architecture
|
| 335 |
+
- **Visual Attention Maps**: See where the model focuses
|
| 336 |
- **Three Classes**: Hemorrhagic Stroke, Ischemic Stroke, No Stroke
|
| 337 |
- **Real-time Analysis**: Fast processing with confidence scores
|
|
|
|
| 338 |
|
| 339 |
### π How to Use:
|
| 340 |
+
1. **Check system status** above (should show green checkmarks)
|
| 341 |
+
2. **Upload a brain scan image** using the sidebar
|
| 342 |
+
3. **View classification results** with confidence scores
|
| 343 |
+
4. **Explore attention visualization** to understand the model's focus
|
| 344 |
|
| 345 |
**Get started by uploading an image! π**
|
| 346 |
""")
|