--- title: Stroke Classification emoji: 🚀 colorFrom: red colorTo: red sdk: docker app_port: 7860 tags: - streamlit pinned: false short_description: Streamlit template space license: apache-2.0 --- # 🧠 Stroke Classification System **Status**: Dependency-conflict-free Streamlit app for stroke classification. ## 🚀 Features - **Clean Dependencies**: No version conflicts - **System Status Check**: Visual indicators for all components - **Fast Loading**: Optimized for Hugging Face Spaces - **Error Handling**: Graceful fallbacks for missing dependencies - **Medical Interface**: Professional design ## 📋 Usage 1. Upload your `.h5` model file to the Files tab 2. Click "Load Model" in the app 3. Upload brain scan images for classification 4. View results with confidence scores ## 🔧 Technical - **Framework**: Streamlit (conflict-free) - **ML**: TensorFlow 2.13.0 with pinned dependencies - **Visualization**: Matplotlib-based heatmaps - **Deployment**: Optimized for HF Spaces --- **Version**: Dependency-conflict-free release ``` And here's your updated Dockerfile to match the port: ```dockerfile type="code" file="Dockerfile" FROM python:3.9-slim WORKDIR /app # Set environment variables for Streamlit ENV HOME=/tmp ENV STREAMLIT_SERVER_HEADLESS=true ENV STREAMLIT_SERVER_ENABLE_CORS=false ENV STREAMLIT_SERVER_ENABLE_XSRF_PROTECTION=false ENV STREAMLIT_BROWSER_GATHER_USAGE_STATS=false ENV STREAMLIT_GLOBAL_DEVELOPMENT_MODE=false RUN apt-get update && apt-get install -y \ build-essential \ curl \ software-properties-common \ git \ && rm -rf /var/lib/apt/lists/* COPY requirements.txt ./ COPY src/ ./src/ RUN pip3 install -r requirements.txt # Create streamlit config directory in the temporary home RUN mkdir -p /tmp/.streamlit EXPOSE 7860 HEALTHCHECK CMD curl --fail http://localhost:7860/_stcore/health ENTRYPOINT ["streamlit", "run", "src/streamlit_app.py", "--server.port=7860", "--server.address=0.0.0.0"]