Spaces:
Running
on
Zero
Running
on
Zero
Upload folder using huggingface_hub
Browse files- .gitattributes +0 -1
- app.py +108 -53
- hollow_knight_boss.pkl +2 -2
- silksong_areas.pkl +3 -0
- silksong_bosses.pkl +3 -0
- silksong_npcs.pkl +3 -0
- silksong_tools_and_skills.pkl +3 -0
.gitattributes
CHANGED
|
@@ -34,4 +34,3 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
assets/background.jpg filter=lfs diff=lfs merge=lfs -text
|
| 37 |
-
transformers-4.57.0.dev0-py3-none-any.whl filter=lfs diff=lfs merge=lfs -text
|
|
|
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
assets/background.jpg filter=lfs diff=lfs merge=lfs -text
|
|
|
app.py
CHANGED
|
@@ -3,6 +3,7 @@ import requests
|
|
| 3 |
import os
|
| 4 |
import pickle
|
| 5 |
import spaces
|
|
|
|
| 6 |
from bs4 import BeautifulSoup
|
| 7 |
from html_to_markdown import convert_to_markdown
|
| 8 |
from huggingface_hub import login
|
|
@@ -22,13 +23,43 @@ LLM_MODEL_ID = "google/gemma-3-12B-it"
|
|
| 22 |
# Data Source Configuration
|
| 23 |
BASE_URL = "https://hollowknight.wiki"
|
| 24 |
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
# Gradio App Configuration
|
| 34 |
DEFAULT_SIMILARITY_THRESHOLD = 0.5
|
|
@@ -38,7 +69,7 @@ DEFAULT_MESSAGE_NO_MATCH = "I'm sorry, I can't find a relevant document to answe
|
|
| 38 |
# --- 2. HELPER FUNCTIONS ---
|
| 39 |
# Reusable functions for web scraping and data processing.
|
| 40 |
|
| 41 |
-
def
|
| 42 |
"""Fetches HTML content from a URL."""
|
| 43 |
try:
|
| 44 |
response = requests.get(url)
|
|
@@ -48,7 +79,7 @@ def get_html(url: str) -> str:
|
|
| 48 |
print(f"Error fetching {url}: {e}")
|
| 49 |
return ""
|
| 50 |
|
| 51 |
-
def
|
| 52 |
"""Parses HTML to find all boss links within the 'mw-pages' div."""
|
| 53 |
soup = BeautifulSoup(html_content, 'html.parser')
|
| 54 |
mw_pages_div = soup.find('div', id='mw-pages')
|
|
@@ -56,19 +87,42 @@ def find_wiki_links(html_content: str) -> list[str]:
|
|
| 56 |
return []
|
| 57 |
return [a['href'] for a in mw_pages_div.find_all('a', href=True)]
|
| 58 |
|
| 59 |
-
def
|
| 60 |
-
"""Fetches and converts a webpage's content to Markdown."""
|
| 61 |
-
html = get_html(url)
|
| 62 |
if not html:
|
| 63 |
return ""
|
|
|
|
| 64 |
soup = BeautifulSoup(html, 'html.parser')
|
| 65 |
-
# Assuming convert_to_markdown correctly processes the soup object
|
| 66 |
return convert_to_markdown(soup)
|
| 67 |
|
|
|
|
|
|
|
|
|
|
| 68 |
|
| 69 |
# --- 3. DATA PROCESSING & CACHING ---
|
| 70 |
# Scrapes data and generates embeddings, using a cache to avoid re-running.
|
| 71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
def load_or_process_source(entry_point: str, cache_file: str, label: str, embedding_model):
|
| 73 |
"""
|
| 74 |
Loads processed data from a cache file if it exists. Otherwise, scrapes,
|
|
@@ -80,30 +134,28 @@ def load_or_process_source(entry_point: str, cache_file: str, label: str, embedd
|
|
| 80 |
return pickle.load(f)
|
| 81 |
|
| 82 |
print(f"ℹ️ No cache for {label}. Starting data scraping and processing...")
|
| 83 |
-
|
| 84 |
-
extracted_links = find_wiki_links(main_page_html)
|
| 85 |
|
| 86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
|
| 88 |
for doc_path in tqdm(extracted_links, desc=f"Processing {label} Pages"):
|
| 89 |
full_url = BASE_URL + doc_path
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
# Trim text from the "References" section onwards for cleaner context
|
| 93 |
-
text = original_text.split("References\n----------\n", 1)[0].strip()
|
| 94 |
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
# Generate and add embedding
|
| 99 |
-
embedding = embedding_model.encode(text, prompt=f"title: {doc_path.split('/')[-1]} | text: ")
|
| 100 |
-
contents["embeddings"].append(embedding)
|
| 101 |
|
| 102 |
-
print(f"✅ {label} processing complete. Saving
|
| 103 |
with open(cache_file, 'wb') as f:
|
| 104 |
-
pickle.dump(
|
| 105 |
|
| 106 |
-
return
|
| 107 |
|
| 108 |
|
| 109 |
# --- 4. CORE AI LOGIC ---
|
|
@@ -111,27 +163,34 @@ def load_or_process_source(entry_point: str, cache_file: str, label: str, embedd
|
|
| 111 |
|
| 112 |
def find_best_context(model, query: str, contents: dict, similarity_threshold: float):
|
| 113 |
"""Finds the most relevant document text based on semantic similarity."""
|
| 114 |
-
if not query
|
| 115 |
return None
|
| 116 |
|
| 117 |
query_embedding = model.encode(query, prompt_name="query")
|
| 118 |
-
|
|
|
|
| 119 |
|
| 120 |
best_index = similarities.argmax().item()
|
| 121 |
best_score = similarities[0, best_index].item()
|
| 122 |
|
| 123 |
print(best_score)
|
| 124 |
if best_score >= similarity_threshold:
|
| 125 |
-
|
|
|
|
| 126 |
return None
|
| 127 |
|
| 128 |
context = None
|
| 129 |
|
| 130 |
@spaces.GPU
|
| 131 |
-
def respond(message: str, history: list, similarity_threshold: float):
|
| 132 |
"""Generates a streaming response from the LLM based on the best context found."""
|
| 133 |
global context
|
| 134 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
# SUCCESS: A valid context was found and has been saved.
|
| 136 |
pass
|
| 137 |
else:
|
|
@@ -146,7 +205,7 @@ def respond(message: str, history: list, similarity_threshold: float):
|
|
| 146 |
messages.extend(history)
|
| 147 |
messages.append({"role": "user", "content": user_prompt})
|
| 148 |
|
| 149 |
-
for item in messages:
|
| 150 |
print(item['role'])
|
| 151 |
print(item['content'])
|
| 152 |
|
|
@@ -188,20 +247,15 @@ llm_pipeline = pipeline(
|
|
| 188 |
)
|
| 189 |
|
| 190 |
print("\n--- Processing Game Data ---")
|
| 191 |
-
|
| 192 |
-
ENTRY_POINT_HOLLOW_KNIGHT, CACHE_FILE_HOLLOW_KNIGHT, "Hollow Knight", embedding_model
|
| 193 |
-
)
|
| 194 |
-
silksong_contents = load_or_process_source(
|
| 195 |
-
ENTRY_POINT_SILKSONG, CACHE_FILE_SILKSONG, "Silksong", embedding_model
|
| 196 |
-
)
|
| 197 |
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
|
| 206 |
|
| 207 |
# --- 6. GRADIO UI ---
|
|
@@ -239,7 +293,7 @@ with gr.Blocks(theme=silksong_theme, css=silksong_css) as demo:
|
|
| 239 |
<div class="header-text">
|
| 240 |
<h1>A Weaver's Counsel</h1>
|
| 241 |
<p>Speak, little traveler. What secrets of Pharloom do you seek?</p>
|
| 242 |
-
<p style="font-style: italic;">(Note: This bot
|
| 243 |
</div>
|
| 244 |
""")
|
| 245 |
|
|
@@ -249,13 +303,14 @@ with gr.Blocks(theme=silksong_theme, css=silksong_css) as demo:
|
|
| 249 |
chatbot=gr.Chatbot(type="messages", label=LLM_MODEL_ID),
|
| 250 |
textbox=gr.Textbox(placeholder="Ask about the haunted kingdom...", container=False, submit_btn=True, scale=7),
|
| 251 |
additional_inputs=[
|
|
|
|
| 252 |
gr.Slider(minimum=0.1, maximum=1.0, value=DEFAULT_SIMILARITY_THRESHOLD, step=0.1, label="Similarity Threshold"),
|
| 253 |
],
|
| 254 |
examples=[
|
| 255 |
-
["Where can I find the Moorwing?", DEFAULT_SIMILARITY_THRESHOLD],
|
| 256 |
-
["Who is the voice of Lace?", DEFAULT_SIMILARITY_THRESHOLD],
|
| 257 |
-
["How can I beat the False Knight?", DEFAULT_SIMILARITY_THRESHOLD],
|
| 258 |
-
["Any achievement for Hornet Protector?", DEFAULT_SIMILARITY_THRESHOLD],
|
| 259 |
],
|
| 260 |
)
|
| 261 |
|
|
|
|
| 3 |
import os
|
| 4 |
import pickle
|
| 5 |
import spaces
|
| 6 |
+
import torch
|
| 7 |
from bs4 import BeautifulSoup
|
| 8 |
from html_to_markdown import convert_to_markdown
|
| 9 |
from huggingface_hub import login
|
|
|
|
| 23 |
# Data Source Configuration
|
| 24 |
BASE_URL = "https://hollowknight.wiki"
|
| 25 |
|
| 26 |
+
GAME_KNOWLEDGE_DATA = [
|
| 27 |
+
{
|
| 28 |
+
"title": "Hollow Knight",
|
| 29 |
+
"category_list": [
|
| 30 |
+
{
|
| 31 |
+
"entry": "/w/Category:Bosses_(Hollow_Knight)",
|
| 32 |
+
"cache": "hollow_knight_boss.pkl",
|
| 33 |
+
"label": "Bosses",
|
| 34 |
+
},
|
| 35 |
+
],
|
| 36 |
+
},
|
| 37 |
+
{
|
| 38 |
+
"title": "Silksong",
|
| 39 |
+
"category_list": [
|
| 40 |
+
{
|
| 41 |
+
"entry": "/w/Category:Areas_(Silksong)",
|
| 42 |
+
"cache": "silksong_areas.pkl",
|
| 43 |
+
"label": "Areas",
|
| 44 |
+
},
|
| 45 |
+
{
|
| 46 |
+
"entry": "/w/Category:Bosses_(Silksong)",
|
| 47 |
+
"cache": "silksong_bosses.pkl",
|
| 48 |
+
"label": "Bosses",
|
| 49 |
+
},
|
| 50 |
+
{
|
| 51 |
+
"entry": "/w/Category:Tools_and_Skills_(Silksong)",
|
| 52 |
+
"cache": "silksong_tools_and_skills.pkl",
|
| 53 |
+
"label": "Tools and Skills",
|
| 54 |
+
},
|
| 55 |
+
{
|
| 56 |
+
"entry": "/w/Category:NPCs_(Silksong)",
|
| 57 |
+
"cache": "silksong_npcs.pkl",
|
| 58 |
+
"label": "NPCs",
|
| 59 |
+
}
|
| 60 |
+
],
|
| 61 |
+
},
|
| 62 |
+
]
|
| 63 |
|
| 64 |
# Gradio App Configuration
|
| 65 |
DEFAULT_SIMILARITY_THRESHOLD = 0.5
|
|
|
|
| 69 |
# --- 2. HELPER FUNCTIONS ---
|
| 70 |
# Reusable functions for web scraping and data processing.
|
| 71 |
|
| 72 |
+
def _get_html(url: str) -> str:
|
| 73 |
"""Fetches HTML content from a URL."""
|
| 74 |
try:
|
| 75 |
response = requests.get(url)
|
|
|
|
| 79 |
print(f"Error fetching {url}: {e}")
|
| 80 |
return ""
|
| 81 |
|
| 82 |
+
def _find_wiki_links(html_content: str) -> list[str]:
|
| 83 |
"""Parses HTML to find all boss links within the 'mw-pages' div."""
|
| 84 |
soup = BeautifulSoup(html_content, 'html.parser')
|
| 85 |
mw_pages_div = soup.find('div', id='mw-pages')
|
|
|
|
| 87 |
return []
|
| 88 |
return [a['href'] for a in mw_pages_div.find_all('a', href=True)]
|
| 89 |
|
| 90 |
+
def _get_markdown_from_html(html: str) -> str:
|
|
|
|
|
|
|
| 91 |
if not html:
|
| 92 |
return ""
|
| 93 |
+
|
| 94 |
soup = BeautifulSoup(html, 'html.parser')
|
|
|
|
| 95 |
return convert_to_markdown(soup)
|
| 96 |
|
| 97 |
+
def _get_markdown_from_url(url: str) -> str:
|
| 98 |
+
return _get_markdown_from_html(_get_html(url))
|
| 99 |
+
|
| 100 |
|
| 101 |
# --- 3. DATA PROCESSING & CACHING ---
|
| 102 |
# Scrapes data and generates embeddings, using a cache to avoid re-running.
|
| 103 |
|
| 104 |
+
def _clean_text(text: str) -> str:
|
| 105 |
+
"""Removes the references section from the raw text."""
|
| 106 |
+
return text.split("References\n----------\n", 1)[0].strip()
|
| 107 |
+
|
| 108 |
+
def _create_data_entry(text: str, doc_path: str, label: str, embedding_model) -> dict | None:
|
| 109 |
+
"""Creates a single structured data entry with text, metadata, and embedding."""
|
| 110 |
+
cleaned_text = _clean_text(text)
|
| 111 |
+
if not cleaned_text:
|
| 112 |
+
return None
|
| 113 |
+
|
| 114 |
+
title = doc_path.split('/')[-1]
|
| 115 |
+
embedding = embedding_model.encode(cleaned_text, prompt=f"title: {title} | text: ")
|
| 116 |
+
return {
|
| 117 |
+
"text": cleaned_text,
|
| 118 |
+
"embedding": embedding,
|
| 119 |
+
"metadata": {
|
| 120 |
+
"category": label,
|
| 121 |
+
"source": BASE_URL + doc_path,
|
| 122 |
+
"title": title
|
| 123 |
+
}
|
| 124 |
+
}
|
| 125 |
+
|
| 126 |
def load_or_process_source(entry_point: str, cache_file: str, label: str, embedding_model):
|
| 127 |
"""
|
| 128 |
Loads processed data from a cache file if it exists. Otherwise, scrapes,
|
|
|
|
| 134 |
return pickle.load(f)
|
| 135 |
|
| 136 |
print(f"ℹ️ No cache for {label}. Starting data scraping and processing...")
|
| 137 |
+
processed_data = []
|
|
|
|
| 138 |
|
| 139 |
+
main_page_html = _get_html(BASE_URL + entry_point)
|
| 140 |
+
data_entry = _create_data_entry(_get_markdown_from_html(main_page_html), entry_point, label, embedding_model)
|
| 141 |
+
if (data_entry):
|
| 142 |
+
processed_data.append(data_entry)
|
| 143 |
+
|
| 144 |
+
extracted_links = _find_wiki_links(main_page_html)
|
| 145 |
|
| 146 |
for doc_path in tqdm(extracted_links, desc=f"Processing {label} Pages"):
|
| 147 |
full_url = BASE_URL + doc_path
|
| 148 |
+
text = _get_markdown_from_url(full_url)
|
|
|
|
|
|
|
|
|
|
| 149 |
|
| 150 |
+
data_entry = _create_data_entry(text, doc_path, label, embedding_model)
|
| 151 |
+
if data_entry:
|
| 152 |
+
processed_data.append(data_entry)
|
|
|
|
|
|
|
|
|
|
| 153 |
|
| 154 |
+
print(f"✅ {label} processing complete. Saving {len(processed_data)} entries to '{cache_file}'...")
|
| 155 |
with open(cache_file, 'wb') as f:
|
| 156 |
+
pickle.dump(processed_data, f)
|
| 157 |
|
| 158 |
+
return processed_data
|
| 159 |
|
| 160 |
|
| 161 |
# --- 4. CORE AI LOGIC ---
|
|
|
|
| 163 |
|
| 164 |
def find_best_context(model, query: str, contents: dict, similarity_threshold: float):
|
| 165 |
"""Finds the most relevant document text based on semantic similarity."""
|
| 166 |
+
if not query:
|
| 167 |
return None
|
| 168 |
|
| 169 |
query_embedding = model.encode(query, prompt_name="query")
|
| 170 |
+
contents_embeddings = torch.stack([torch.tensor(item["embedding"]) for item in contents])
|
| 171 |
+
similarities = model.similarity(query_embedding, contents_embeddings)
|
| 172 |
|
| 173 |
best_index = similarities.argmax().item()
|
| 174 |
best_score = similarities[0, best_index].item()
|
| 175 |
|
| 176 |
print(best_score)
|
| 177 |
if best_score >= similarity_threshold:
|
| 178 |
+
print(f"Using \"{contents[best_index]['metadata']['source']}\"...")
|
| 179 |
+
return contents[best_index]["text"]
|
| 180 |
return None
|
| 181 |
|
| 182 |
context = None
|
| 183 |
|
| 184 |
@spaces.GPU
|
| 185 |
+
def respond(message: str, history: list, game: str, similarity_threshold: float):
|
| 186 |
"""Generates a streaming response from the LLM based on the best context found."""
|
| 187 |
global context
|
| 188 |
+
contents = _select_content(game)
|
| 189 |
+
if not contents:
|
| 190 |
+
yield DEFAULT_MESSAGE_NO_MATCH
|
| 191 |
+
return
|
| 192 |
+
|
| 193 |
+
if (context := find_best_context(embedding_model, message, contents, similarity_threshold) or context):
|
| 194 |
# SUCCESS: A valid context was found and has been saved.
|
| 195 |
pass
|
| 196 |
else:
|
|
|
|
| 205 |
messages.extend(history)
|
| 206 |
messages.append({"role": "user", "content": user_prompt})
|
| 207 |
|
| 208 |
+
for item in messages[1:]:
|
| 209 |
print(item['role'])
|
| 210 |
print(item['content'])
|
| 211 |
|
|
|
|
| 247 |
)
|
| 248 |
|
| 249 |
print("\n--- Processing Game Data ---")
|
| 250 |
+
knowledge_base = {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 251 |
|
| 252 |
+
for item in GAME_KNOWLEDGE_DATA:
|
| 253 |
+
knowledge_base[item['title']] = []
|
| 254 |
+
for category in item['category_list']:
|
| 255 |
+
knowledge_base[item['title']] += load_or_process_source(category['entry'], category['cache'], category['label'], embedding_model)
|
| 256 |
+
|
| 257 |
+
def _select_content(game: str):
|
| 258 |
+
return knowledge_base[game]
|
| 259 |
|
| 260 |
|
| 261 |
# --- 6. GRADIO UI ---
|
|
|
|
| 293 |
<div class="header-text">
|
| 294 |
<h1>A Weaver's Counsel</h1>
|
| 295 |
<p>Speak, little traveler. What secrets of Pharloom do you seek?</p>
|
| 296 |
+
<p style="font-style: italic;">(Note: This bot has a limited knowledge.)</p>
|
| 297 |
</div>
|
| 298 |
""")
|
| 299 |
|
|
|
|
| 303 |
chatbot=gr.Chatbot(type="messages", label=LLM_MODEL_ID),
|
| 304 |
textbox=gr.Textbox(placeholder="Ask about the haunted kingdom...", container=False, submit_btn=True, scale=7),
|
| 305 |
additional_inputs=[
|
| 306 |
+
gr.Dropdown(["Hollow Knight", "Silksong"], label="Game"),
|
| 307 |
gr.Slider(minimum=0.1, maximum=1.0, value=DEFAULT_SIMILARITY_THRESHOLD, step=0.1, label="Similarity Threshold"),
|
| 308 |
],
|
| 309 |
examples=[
|
| 310 |
+
["Where can I find the Moorwing?", "Silksong", DEFAULT_SIMILARITY_THRESHOLD],
|
| 311 |
+
["Who is the voice of Lace?", "Silksong", DEFAULT_SIMILARITY_THRESHOLD],
|
| 312 |
+
["How can I beat the False Knight?", "Hollow Knight", DEFAULT_SIMILARITY_THRESHOLD],
|
| 313 |
+
["Any achievement for Hornet Protector?", "Hollow Knight", DEFAULT_SIMILARITY_THRESHOLD],
|
| 314 |
],
|
| 315 |
)
|
| 316 |
|
hollow_knight_boss.pkl
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:68d0acf0286e68a4183da2b78e638e6792f1eba19f84cda331512f6301c50039
|
| 3 |
+
size 995501
|
silksong_areas.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:147a37b653b5c5016ab6067a7aaccb68e0e2e5ca0ef1c0bd4b1591f59f56b3ec
|
| 3 |
+
size 84007
|
silksong_bosses.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:dd7e5a122cc5075fa8d45f73a5fe2dc3f893bf1934da82a5bf30044fe69b72b2
|
| 3 |
+
size 73446
|
silksong_npcs.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1dde39276b5c2f84d074d7c0c60b3ac076dd31ee6ed81fb9e023dca91a3d8576
|
| 3 |
+
size 115874
|
silksong_tools_and_skills.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b953f6e1be940f561c4b6234ae22d22702e6b054fe394f8e984869b3eecb023a
|
| 3 |
+
size 17485
|