Update agent_simple.py
Browse files- agent_simple.py +235 -115
agent_simple.py
CHANGED
|
@@ -1,133 +1,238 @@
|
|
| 1 |
-
"""LangGraph Agent"""
|
| 2 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
from dotenv import load_dotenv
|
| 4 |
from langgraph.graph import START, StateGraph, MessagesState
|
| 5 |
from langgraph.prebuilt import tools_condition
|
| 6 |
from langgraph.prebuilt import ToolNode
|
| 7 |
-
from langchain_google_genai import ChatGoogleGenerativeAI
|
| 8 |
-
from langchain_groq import ChatGroq
|
| 9 |
-
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint
|
| 10 |
from langchain_community.tools.tavily_search import TavilySearchResults
|
| 11 |
from langchain_community.document_loaders import WikipediaLoader
|
| 12 |
from langchain_community.document_loaders import ArxivLoader
|
| 13 |
-
from langchain_core.messages import SystemMessage, HumanMessage
|
| 14 |
from langchain_core.tools import tool
|
|
|
|
|
|
|
| 15 |
|
| 16 |
load_dotenv()
|
| 17 |
|
| 18 |
-
|
|
|
|
|
|
|
| 19 |
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
|
|
|
| 28 |
@tool
|
| 29 |
def multiply(a: int, b: int) -> int:
|
| 30 |
-
"""Multiply two numbers.
|
| 31 |
-
Args:
|
| 32 |
-
a: first int
|
| 33 |
-
b: second int
|
| 34 |
-
"""
|
| 35 |
return a * b
|
| 36 |
|
| 37 |
@tool
|
| 38 |
def add(a: int, b: int) -> int:
|
| 39 |
-
"""Add two numbers.
|
| 40 |
-
|
| 41 |
-
Args:
|
| 42 |
-
a: first int
|
| 43 |
-
b: second int
|
| 44 |
-
"""
|
| 45 |
return a + b
|
| 46 |
|
| 47 |
@tool
|
| 48 |
def subtract(a: int, b: int) -> int:
|
| 49 |
-
"""Subtract two numbers.
|
| 50 |
-
|
| 51 |
-
Args:
|
| 52 |
-
a: first int
|
| 53 |
-
b: second int
|
| 54 |
-
"""
|
| 55 |
return a - b
|
| 56 |
|
| 57 |
@tool
|
| 58 |
-
def divide(a:
|
| 59 |
-
"""Divide two numbers.
|
| 60 |
-
|
| 61 |
-
Args:
|
| 62 |
-
a: first int
|
| 63 |
-
b: second int
|
| 64 |
-
"""
|
| 65 |
if b == 0:
|
| 66 |
raise ValueError("Cannot divide by zero.")
|
| 67 |
return a / b
|
| 68 |
|
| 69 |
@tool
|
| 70 |
def modulus(a: int, b: int) -> int:
|
| 71 |
-
"""Get the modulus of two numbers.
|
| 72 |
-
|
| 73 |
-
Args:
|
| 74 |
-
a: first int
|
| 75 |
-
b: second int
|
| 76 |
-
"""
|
| 77 |
return a % b
|
| 78 |
|
| 79 |
@tool
|
| 80 |
def wiki_search(query: str) -> str:
|
| 81 |
-
"""Search Wikipedia for a query and return maximum 2 results.
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
|
| 93 |
@tool
|
| 94 |
def web_search(query: str) -> str:
|
| 95 |
-
"""Search Tavily for a query and return maximum 3 results.
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
|
| 107 |
@tool
|
| 108 |
-
def
|
| 109 |
-
"""Search Arxiv for a query and return maximum 3
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
|
| 123 |
-
|
| 124 |
-
with open("system_prompt.txt", "r", encoding="utf-8") as f:
|
| 125 |
-
system_prompt = f.read()
|
| 126 |
-
|
| 127 |
-
# System message
|
| 128 |
sys_msg = SystemMessage(content=system_prompt)
|
| 129 |
|
| 130 |
-
|
| 131 |
tools = [
|
| 132 |
multiply,
|
| 133 |
add,
|
|
@@ -136,55 +241,70 @@ tools = [
|
|
| 136 |
modulus,
|
| 137 |
wiki_search,
|
| 138 |
web_search,
|
| 139 |
-
|
| 140 |
]
|
| 141 |
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
llm =
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 157 |
)
|
| 158 |
else:
|
| 159 |
-
raise ValueError("
|
|
|
|
| 160 |
# Bind tools to LLM
|
| 161 |
llm_with_tools = llm.bind_tools(tools)
|
| 162 |
|
| 163 |
-
# Node
|
| 164 |
def assistant(state: MessagesState):
|
| 165 |
"""Assistant node"""
|
| 166 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 167 |
|
|
|
|
| 168 |
builder = StateGraph(MessagesState)
|
| 169 |
builder.add_node("assistant", assistant)
|
| 170 |
builder.add_node("tools", ToolNode(tools))
|
| 171 |
builder.add_edge(START, "assistant")
|
| 172 |
-
builder.add_conditional_edges(
|
| 173 |
-
"assistant",
|
| 174 |
-
tools_condition,
|
| 175 |
-
)
|
| 176 |
builder.add_edge("tools", "assistant")
|
| 177 |
|
| 178 |
-
# Compile graph
|
| 179 |
return builder.compile()
|
| 180 |
|
| 181 |
-
# test
|
| 182 |
if __name__ == "__main__":
|
| 183 |
question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?"
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""LangGraph Agent with Direct Groq API and Custom Rate Limiting"""
|
| 2 |
import os
|
| 3 |
+
import time
|
| 4 |
+
import threading
|
| 5 |
+
from collections import deque
|
| 6 |
+
from typing import Dict, Any, List
|
| 7 |
from dotenv import load_dotenv
|
| 8 |
from langgraph.graph import START, StateGraph, MessagesState
|
| 9 |
from langgraph.prebuilt import tools_condition
|
| 10 |
from langgraph.prebuilt import ToolNode
|
|
|
|
|
|
|
|
|
|
| 11 |
from langchain_community.tools.tavily_search import TavilySearchResults
|
| 12 |
from langchain_community.document_loaders import WikipediaLoader
|
| 13 |
from langchain_community.document_loaders import ArxivLoader
|
| 14 |
+
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
|
| 15 |
from langchain_core.tools import tool
|
| 16 |
+
from groq import Groq, RateLimitError
|
| 17 |
+
import logging
|
| 18 |
|
| 19 |
load_dotenv()
|
| 20 |
|
| 21 |
+
# Setup logging
|
| 22 |
+
logging.basicConfig(level=logging.INFO)
|
| 23 |
+
logger = logging.getLogger(__name__)
|
| 24 |
|
| 25 |
+
class GroqRateLimiter:
|
| 26 |
+
"""Thread-safe rate limiter for direct Groq API calls"""
|
| 27 |
+
|
| 28 |
+
def __init__(self, rpm: int = 20, tpm: int = 6000):
|
| 29 |
+
self.rpm = rpm # Requests per minute
|
| 30 |
+
self.tpm = tpm # Tokens per minute
|
| 31 |
+
self.request_times = deque()
|
| 32 |
+
self.token_usage = deque() # (timestamp, token_count) tuples
|
| 33 |
+
self.lock = threading.Lock()
|
| 34 |
+
|
| 35 |
+
def _clean_old_records(self, current_time: float):
|
| 36 |
+
"""Remove records older than 1 minute"""
|
| 37 |
+
minute_ago = current_time - 60
|
| 38 |
+
|
| 39 |
+
while self.request_times and self.request_times[0] <= minute_ago:
|
| 40 |
+
self.request_times.popleft()
|
| 41 |
+
|
| 42 |
+
while self.token_usage and self.token_usage[0][0] <= minute_ago:
|
| 43 |
+
self.token_usage.popleft()
|
| 44 |
+
|
| 45 |
+
def can_make_request(self, estimated_tokens: int = 1000) -> tuple[bool, float]:
|
| 46 |
+
"""Check if request can be made, return (can_proceed, wait_time)"""
|
| 47 |
+
with self.lock:
|
| 48 |
+
current_time = time.time()
|
| 49 |
+
self._clean_old_records(current_time)
|
| 50 |
+
|
| 51 |
+
wait_time = 0
|
| 52 |
+
|
| 53 |
+
# Check RPM limit
|
| 54 |
+
if len(self.request_times) >= self.rpm:
|
| 55 |
+
oldest_request = self.request_times[0]
|
| 56 |
+
wait_time = max(wait_time, 60 - (current_time - oldest_request))
|
| 57 |
+
|
| 58 |
+
# Check TPM limit
|
| 59 |
+
current_tokens = sum(tokens for _, tokens in self.token_usage)
|
| 60 |
+
if current_tokens + estimated_tokens > self.tpm:
|
| 61 |
+
if self.token_usage:
|
| 62 |
+
oldest_token_time = self.token_usage[0][0]
|
| 63 |
+
wait_time = max(wait_time, 60 - (current_time - oldest_token_time))
|
| 64 |
+
|
| 65 |
+
return wait_time <= 0, wait_time
|
| 66 |
+
|
| 67 |
+
def record_request(self, token_count: int):
|
| 68 |
+
"""Record a successful request"""
|
| 69 |
+
with self.lock:
|
| 70 |
+
current_time = time.time()
|
| 71 |
+
self.request_times.append(current_time)
|
| 72 |
+
self.token_usage.append((current_time, token_count))
|
| 73 |
|
| 74 |
+
class GroqWrapper:
|
| 75 |
+
"""Wrapper for direct Groq API with rate limiting and error handling"""
|
| 76 |
+
|
| 77 |
+
def __init__(self, model: str = "llama-3.1-70b-versatile",
|
| 78 |
+
rpm: int = 30, tpm: int = 6000):
|
| 79 |
+
self.client = Groq(api_key=os.getenv("GROQ_API_KEY"))
|
| 80 |
+
self.model = model
|
| 81 |
+
self.rate_limiter = GroqRateLimiter(rpm=rpm, tpm=tpm)
|
| 82 |
+
|
| 83 |
+
def estimate_tokens(self, messages: List[Dict]) -> int:
|
| 84 |
+
"""Rough token estimation (4 chars ≈ 1 token)"""
|
| 85 |
+
total_chars = sum(len(str(msg.get('content', ''))) for msg in messages)
|
| 86 |
+
return max(total_chars // 4, 100)
|
| 87 |
+
|
| 88 |
+
def invoke(self, messages: List[Dict], **kwargs) -> Dict:
|
| 89 |
+
"""Invoke Groq API with rate limiting and retry logic"""
|
| 90 |
+
# Convert LangChain messages to Groq format if needed
|
| 91 |
+
groq_messages = []
|
| 92 |
+
for msg in messages:
|
| 93 |
+
if hasattr(msg, 'content') and hasattr(msg, 'type'):
|
| 94 |
+
# LangChain message object
|
| 95 |
+
role = "user" if msg.type == "human" else "assistant" if msg.type == "ai" else "system"
|
| 96 |
+
groq_messages.append({"role": role, "content": str(msg.content)})
|
| 97 |
+
else:
|
| 98 |
+
# Already in dict format
|
| 99 |
+
groq_messages.append(msg)
|
| 100 |
+
|
| 101 |
+
estimated_tokens = self.estimate_tokens(groq_messages)
|
| 102 |
+
|
| 103 |
+
max_retries = 3
|
| 104 |
+
for attempt in range(max_retries):
|
| 105 |
+
try:
|
| 106 |
+
# Check rate limits
|
| 107 |
+
can_proceed, wait_time = self.rate_limiter.can_make_request(estimated_tokens)
|
| 108 |
+
if not can_proceed:
|
| 109 |
+
logger.info(f"Rate limit: waiting {wait_time:.2f} seconds")
|
| 110 |
+
time.sleep(wait_time)
|
| 111 |
+
|
| 112 |
+
# Make the API call
|
| 113 |
+
response = self.client.chat.completions.create(
|
| 114 |
+
model=self.model,
|
| 115 |
+
messages=groq_messages,
|
| 116 |
+
**kwargs
|
| 117 |
+
)
|
| 118 |
+
|
| 119 |
+
# Record successful request
|
| 120 |
+
actual_tokens = response.usage.total_tokens if hasattr(response, 'usage') else estimated_tokens
|
| 121 |
+
self.rate_limiter.record_request(actual_tokens)
|
| 122 |
+
|
| 123 |
+
# Convert back to LangChain format
|
| 124 |
+
content = response.choices[0].message.content
|
| 125 |
+
return AIMessage(content=content)
|
| 126 |
+
|
| 127 |
+
except RateLimitError as e:
|
| 128 |
+
if attempt == max_retries - 1:
|
| 129 |
+
raise e
|
| 130 |
+
|
| 131 |
+
# Use retry-after header if available
|
| 132 |
+
retry_after = getattr(e.response, 'headers', {}).get('retry-after')
|
| 133 |
+
if retry_after:
|
| 134 |
+
delay = float(retry_after)
|
| 135 |
+
else:
|
| 136 |
+
delay = 2 ** attempt # Exponential backoff
|
| 137 |
+
|
| 138 |
+
logger.warning(f"Rate limited. Retrying in {delay} seconds (attempt {attempt + 1})")
|
| 139 |
+
time.sleep(delay)
|
| 140 |
+
|
| 141 |
+
except Exception as e:
|
| 142 |
+
logger.error(f"Groq API error: {e}")
|
| 143 |
+
if attempt == max_retries - 1:
|
| 144 |
+
raise e
|
| 145 |
+
time.sleep(2 ** attempt)
|
| 146 |
+
|
| 147 |
+
raise Exception("Max retries exceeded")
|
| 148 |
+
|
| 149 |
+
def bind_tools(self, tools):
|
| 150 |
+
"""Mock bind_tools method for compatibility"""
|
| 151 |
+
self.tools = tools
|
| 152 |
+
return self
|
| 153 |
|
| 154 |
+
# Your existing tools
|
| 155 |
@tool
|
| 156 |
def multiply(a: int, b: int) -> int:
|
| 157 |
+
"""Multiply two numbers."""
|
|
|
|
|
|
|
|
|
|
|
|
|
| 158 |
return a * b
|
| 159 |
|
| 160 |
@tool
|
| 161 |
def add(a: int, b: int) -> int:
|
| 162 |
+
"""Add two numbers."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
return a + b
|
| 164 |
|
| 165 |
@tool
|
| 166 |
def subtract(a: int, b: int) -> int:
|
| 167 |
+
"""Subtract two numbers."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 168 |
return a - b
|
| 169 |
|
| 170 |
@tool
|
| 171 |
+
def divide(a: float, b: float) -> float:
|
| 172 |
+
"""Divide two numbers."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 173 |
if b == 0:
|
| 174 |
raise ValueError("Cannot divide by zero.")
|
| 175 |
return a / b
|
| 176 |
|
| 177 |
@tool
|
| 178 |
def modulus(a: int, b: int) -> int:
|
| 179 |
+
"""Get the modulus of two numbers."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
return a % b
|
| 181 |
|
| 182 |
@tool
|
| 183 |
def wiki_search(query: str) -> str:
|
| 184 |
+
"""Search Wikipedia for a query and return maximum 2 results."""
|
| 185 |
+
try:
|
| 186 |
+
search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
|
| 187 |
+
formatted_search_docs = "\n\n---\n\n".join(
|
| 188 |
+
[
|
| 189 |
+
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
|
| 190 |
+
for doc in search_docs
|
| 191 |
+
])
|
| 192 |
+
return {"wiki_results": formatted_search_docs}
|
| 193 |
+
except Exception as e:
|
| 194 |
+
return {"wiki_results": f"Error: {str(e)}"}
|
| 195 |
|
| 196 |
@tool
|
| 197 |
def web_search(query: str) -> str:
|
| 198 |
+
"""Search Tavily for a query and return maximum 3 results."""
|
| 199 |
+
try:
|
| 200 |
+
search_docs = TavilySearchResults(max_results=3).invoke(query=query)
|
| 201 |
+
formatted_search_docs = "\n\n---\n\n".join(
|
| 202 |
+
[
|
| 203 |
+
f'<Document source="{doc.get("url", "")}">\n{doc.get("content", "")}\n</Document>'
|
| 204 |
+
for doc in search_docs
|
| 205 |
+
])
|
| 206 |
+
return {"web_results": formatted_search_docs}
|
| 207 |
+
except Exception as e:
|
| 208 |
+
return {"web_results": f"Error: {str(e)}"}
|
| 209 |
|
| 210 |
@tool
|
| 211 |
+
def arxiv_search(query: str) -> str:
|
| 212 |
+
"""Search Arxiv for a query and return maximum 3 results."""
|
| 213 |
+
try:
|
| 214 |
+
search_docs = ArxivLoader(query=query, load_max_docs=3).load()
|
| 215 |
+
formatted_search_docs = "\n\n---\n\n".join(
|
| 216 |
+
[
|
| 217 |
+
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
|
| 218 |
+
for doc in search_docs
|
| 219 |
+
])
|
| 220 |
+
return {"arxiv_results": formatted_search_docs}
|
| 221 |
+
except Exception as e:
|
| 222 |
+
return {"arxiv_results": f"Error: {str(e)}"}
|
|
|
|
| 223 |
|
| 224 |
+
def load_system_prompt():
|
| 225 |
+
"""Load system prompt with error handling"""
|
| 226 |
+
try:
|
| 227 |
+
with open("system_prompt.txt", "r", encoding="utf-8") as f:
|
| 228 |
+
return f.read()
|
| 229 |
+
except FileNotFoundError:
|
| 230 |
+
logger.warning("system_prompt.txt not found, using default prompt")
|
| 231 |
+
return "You are a helpful AI assistant."
|
| 232 |
|
| 233 |
+
system_prompt = load_system_prompt()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 234 |
sys_msg = SystemMessage(content=system_prompt)
|
| 235 |
|
|
|
|
| 236 |
tools = [
|
| 237 |
multiply,
|
| 238 |
add,
|
|
|
|
| 241 |
modulus,
|
| 242 |
wiki_search,
|
| 243 |
web_search,
|
| 244 |
+
arxiv_search,
|
| 245 |
]
|
| 246 |
|
| 247 |
+
def build_graph(provider: str = "direct_groq", model: str = "llama-3.1-70b-versatile"):
|
| 248 |
+
"""Build the graph with direct Groq API and custom rate limiting"""
|
| 249 |
+
|
| 250 |
+
if provider == "direct_groq":
|
| 251 |
+
# Use custom Groq wrapper with rate limiting
|
| 252 |
+
llm = GroqWrapper(model=model, rpm=30, tpm=6000) # Adjust based on your plan
|
| 253 |
+
|
| 254 |
+
elif provider == "langchain_groq":
|
| 255 |
+
# Use LangChain's ChatGroq with native rate limiting
|
| 256 |
+
from langchain_core.rate_limiters import InMemoryRateLimiter
|
| 257 |
+
|
| 258 |
+
rate_limiter = InMemoryRateLimiter(
|
| 259 |
+
requests_per_second=0.5, # 30 RPM
|
| 260 |
+
check_every_n_seconds=0.1,
|
| 261 |
+
max_bucket_size=5,
|
| 262 |
+
)
|
| 263 |
+
|
| 264 |
+
from langchain_groq import ChatGroq
|
| 265 |
+
llm = ChatGroq(
|
| 266 |
+
model=model,
|
| 267 |
+
temperature=0,
|
| 268 |
+
groq_api_key=os.getenv("GROQ_API_KEY"),
|
| 269 |
+
rate_limiter=rate_limiter
|
| 270 |
)
|
| 271 |
else:
|
| 272 |
+
raise ValueError("Choose 'direct_groq' or 'langchain_groq'")
|
| 273 |
+
|
| 274 |
# Bind tools to LLM
|
| 275 |
llm_with_tools = llm.bind_tools(tools)
|
| 276 |
|
|
|
|
| 277 |
def assistant(state: MessagesState):
|
| 278 |
"""Assistant node"""
|
| 279 |
+
try:
|
| 280 |
+
response = llm_with_tools.invoke(state["messages"])
|
| 281 |
+
return {"messages": [response]}
|
| 282 |
+
except Exception as e:
|
| 283 |
+
logger.error(f"Assistant failed: {e}")
|
| 284 |
+
error_msg = AIMessage(content=f"I encountered an error: {str(e)}")
|
| 285 |
+
return {"messages": [error_msg]}
|
| 286 |
|
| 287 |
+
# Build the graph
|
| 288 |
builder = StateGraph(MessagesState)
|
| 289 |
builder.add_node("assistant", assistant)
|
| 290 |
builder.add_node("tools", ToolNode(tools))
|
| 291 |
builder.add_edge(START, "assistant")
|
| 292 |
+
builder.add_conditional_edges("assistant", tools_condition)
|
|
|
|
|
|
|
|
|
|
| 293 |
builder.add_edge("tools", "assistant")
|
| 294 |
|
|
|
|
| 295 |
return builder.compile()
|
| 296 |
|
|
|
|
| 297 |
if __name__ == "__main__":
|
| 298 |
question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?"
|
| 299 |
+
|
| 300 |
+
try:
|
| 301 |
+
# Test with direct Groq API
|
| 302 |
+
graph = build_graph(provider="direct_groq")
|
| 303 |
+
messages = [HumanMessage(content=question)]
|
| 304 |
+
result = graph.invoke({"messages": messages})
|
| 305 |
+
|
| 306 |
+
for m in result["messages"]:
|
| 307 |
+
m.pretty_print()
|
| 308 |
+
|
| 309 |
+
except Exception as e:
|
| 310 |
+
logger.error(f"Test failed: {e}")
|