Spaces:
Running
Running
admin
commited on
Commit
·
c5069aa
1
Parent(s):
54b4b45
merge try
Browse files
app.py
CHANGED
|
@@ -40,96 +40,81 @@ def circular_padding(spec: np.ndarray, end: int):
|
|
| 40 |
|
| 41 |
|
| 42 |
def wav2mel(audio_path: str, width=3):
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
)
|
| 67 |
-
plt.close()
|
| 68 |
-
|
| 69 |
-
except Exception as e:
|
| 70 |
-
print(f"Error converting {audio_path} : {e}")
|
| 71 |
|
| 72 |
|
| 73 |
def wav2cqt(audio_path: str, width=3):
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
)
|
| 98 |
-
plt.close()
|
| 99 |
-
|
| 100 |
-
except Exception as e:
|
| 101 |
-
print(f"Error converting {audio_path} : {e}")
|
| 102 |
|
| 103 |
|
| 104 |
def wav2chroma(audio_path: str, width=3):
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
)
|
| 129 |
-
plt.close()
|
| 130 |
-
|
| 131 |
-
except Exception as e:
|
| 132 |
-
print(f"Error converting {audio_path} : {e}")
|
| 133 |
|
| 134 |
|
| 135 |
def most_frequent_value(lst: list):
|
|
@@ -149,13 +134,15 @@ def infer(wav_path: str, log_name: str, folder_path=TEMP_DIR):
|
|
| 149 |
if not wav_path:
|
| 150 |
return None, "Please input an audio!"
|
| 151 |
|
|
|
|
|
|
|
| 152 |
try:
|
| 153 |
model = EvalNet(log_name, len(TRANSLATE)).model
|
|
|
|
|
|
|
| 154 |
except Exception as e:
|
| 155 |
return None, f"{e}"
|
| 156 |
|
| 157 |
-
spec = log_name.split("_")[-3]
|
| 158 |
-
eval("wav2%s" % spec)(wav_path)
|
| 159 |
jpgs = find_files(folder_path, ".jpg")
|
| 160 |
preds = []
|
| 161 |
for jpg in jpgs:
|
|
|
|
| 40 |
|
| 41 |
|
| 42 |
def wav2mel(audio_path: str, width=3):
|
| 43 |
+
y, sr = librosa.load(audio_path, sr=SAMPLE_RATE)
|
| 44 |
+
total_frames = len(y)
|
| 45 |
+
if total_frames % (width * sr) != 0:
|
| 46 |
+
count = total_frames // (width * sr) + 1
|
| 47 |
+
y = circular_padding(y, count * width * sr)
|
| 48 |
+
|
| 49 |
+
mel_spec = librosa.feature.melspectrogram(y=y, sr=sr)
|
| 50 |
+
log_mel_spec = librosa.power_to_db(mel_spec, ref=np.max)
|
| 51 |
+
dur = librosa.get_duration(y=y, sr=sr)
|
| 52 |
+
total_frames = log_mel_spec.shape[1]
|
| 53 |
+
step = int(width * total_frames / dur)
|
| 54 |
+
count = int(total_frames / step)
|
| 55 |
+
begin = int(0.5 * (total_frames - count * step))
|
| 56 |
+
end = begin + step * count
|
| 57 |
+
for i in range(begin, end, step):
|
| 58 |
+
librosa.display.specshow(log_mel_spec[:, i : i + step])
|
| 59 |
+
plt.axis("off")
|
| 60 |
+
plt.savefig(
|
| 61 |
+
f"{TEMP_DIR}/{i}.jpg",
|
| 62 |
+
bbox_inches="tight",
|
| 63 |
+
pad_inches=0.0,
|
| 64 |
+
)
|
| 65 |
+
plt.close()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
|
| 68 |
def wav2cqt(audio_path: str, width=3):
|
| 69 |
+
y, sr = librosa.load(audio_path, sr=SAMPLE_RATE)
|
| 70 |
+
total_frames = len(y)
|
| 71 |
+
if total_frames % (width * sr) != 0:
|
| 72 |
+
count = total_frames // (width * sr) + 1
|
| 73 |
+
y = circular_padding(y, count * width * sr)
|
| 74 |
+
|
| 75 |
+
cqt_spec = librosa.cqt(y=y, sr=sr)
|
| 76 |
+
log_cqt_spec = librosa.power_to_db(np.abs(cqt_spec) ** 2, ref=np.max)
|
| 77 |
+
dur = librosa.get_duration(y=y, sr=sr)
|
| 78 |
+
total_frames = log_cqt_spec.shape[1]
|
| 79 |
+
step = int(width * total_frames / dur)
|
| 80 |
+
count = int(total_frames / step)
|
| 81 |
+
begin = int(0.5 * (total_frames - count * step))
|
| 82 |
+
end = begin + step * count
|
| 83 |
+
for i in range(begin, end, step):
|
| 84 |
+
librosa.display.specshow(log_cqt_spec[:, i : i + step])
|
| 85 |
+
plt.axis("off")
|
| 86 |
+
plt.savefig(
|
| 87 |
+
f"{TEMP_DIR}/{i}.jpg",
|
| 88 |
+
bbox_inches="tight",
|
| 89 |
+
pad_inches=0.0,
|
| 90 |
+
)
|
| 91 |
+
plt.close()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
|
| 93 |
|
| 94 |
def wav2chroma(audio_path: str, width=3):
|
| 95 |
+
y, sr = librosa.load(audio_path, sr=SAMPLE_RATE)
|
| 96 |
+
total_frames = len(y)
|
| 97 |
+
if total_frames % (width * sr) != 0:
|
| 98 |
+
count = total_frames // (width * sr) + 1
|
| 99 |
+
y = circular_padding(y, count * width * sr)
|
| 100 |
+
|
| 101 |
+
chroma_spec = librosa.feature.chroma_stft(y=y, sr=sr)
|
| 102 |
+
log_chroma_spec = librosa.power_to_db(np.abs(chroma_spec) ** 2, ref=np.max)
|
| 103 |
+
dur = librosa.get_duration(y=y, sr=sr)
|
| 104 |
+
total_frames = log_chroma_spec.shape[1]
|
| 105 |
+
step = int(width * total_frames / dur)
|
| 106 |
+
count = int(total_frames / step)
|
| 107 |
+
begin = int(0.5 * (total_frames - count * step))
|
| 108 |
+
end = begin + step * count
|
| 109 |
+
for i in range(begin, end, step):
|
| 110 |
+
librosa.display.specshow(log_chroma_spec[:, i : i + step])
|
| 111 |
+
plt.axis("off")
|
| 112 |
+
plt.savefig(
|
| 113 |
+
f"{TEMP_DIR}/{i}.jpg",
|
| 114 |
+
bbox_inches="tight",
|
| 115 |
+
pad_inches=0.0,
|
| 116 |
+
)
|
| 117 |
+
plt.close()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
|
| 119 |
|
| 120 |
def most_frequent_value(lst: list):
|
|
|
|
| 134 |
if not wav_path:
|
| 135 |
return None, "Please input an audio!"
|
| 136 |
|
| 137 |
+
spec = log_name.split("_")[-3]
|
| 138 |
+
os.makedirs(folder_path, exist_ok=True)
|
| 139 |
try:
|
| 140 |
model = EvalNet(log_name, len(TRANSLATE)).model
|
| 141 |
+
eval("wav2%s" % spec)(wav_path)
|
| 142 |
+
|
| 143 |
except Exception as e:
|
| 144 |
return None, f"{e}"
|
| 145 |
|
|
|
|
|
|
|
| 146 |
jpgs = find_files(folder_path, ".jpg")
|
| 147 |
preds = []
|
| 148 |
for jpg in jpgs:
|