Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import pipeline
|
| 3 |
+
|
| 4 |
+
ner = pipeline('ner')
|
| 5 |
+
|
| 6 |
+
def merged_words(tokens):
|
| 7 |
+
m = []
|
| 8 |
+
for token in tokens:
|
| 9 |
+
if m and token['entity'].startswith('I-') and m[-1]['entity'].endswith(token['entity'][2:]):
|
| 10 |
+
last_token = m[-1]
|
| 11 |
+
last_token['word'] += token['word'].replace('##', '')
|
| 12 |
+
last_token['end'] = token['end']
|
| 13 |
+
last_token['score'] = (last_token['score'] + token[score]) / 2
|
| 14 |
+
else:
|
| 15 |
+
m.append(token)
|
| 16 |
+
return m
|
| 17 |
+
|
| 18 |
+
def named(input):
|
| 19 |
+
output = ner(input)
|
| 20 |
+
merged_words = merged_words(output)
|
| 21 |
+
return {'text': input, 'entities': merged_words}
|
| 22 |
+
|
| 23 |
+
a = gr.Interface(fn=name,
|
| 24 |
+
inputs=[gr.Textbox(label="Text input", lines= 2)],
|
| 25 |
+
outputs=[gr.HighlightedText(label='Text with entities')],
|
| 26 |
+
title='Named Entity Recognition', examples=["My name is Andrew, I'm building DeeplearningAI and I live in California", "My name is Poli, I live in Vienna and work at HuggingFace"])
|
| 27 |
+
a.launch()
|
| 28 |
+
|