Upload 4 files
Browse files- cage/__init__.py +0 -0
- cage/__pycache__/__init__.cpython-39.pyc +0 -0
- cage/__pycache__/model.cpython-39.pyc +0 -0
- cage/model.py +166 -0
cage/__init__.py
ADDED
|
File without changes
|
cage/__pycache__/__init__.cpython-39.pyc
ADDED
|
Binary file (154 Bytes). View file
|
|
|
cage/__pycache__/model.cpython-39.pyc
ADDED
|
Binary file (1.2 kB). View file
|
|
|
cage/model.py
ADDED
|
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os,sys
|
| 2 |
+
import math
|
| 3 |
+
from pretrain.track.model import build_track_model
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class Downstream_cage_model(nn.Module):
|
| 8 |
+
def __init__(self,pretrain_model,embed_dim,crop):
|
| 9 |
+
super().__init__()
|
| 10 |
+
self.mlp = nn.Sequential(
|
| 11 |
+
nn.Linear(embed_dim, 128),
|
| 12 |
+
nn.ReLU(),
|
| 13 |
+
nn.Linear(128,1)
|
| 14 |
+
)
|
| 15 |
+
self.pretrain_model=pretrain_model
|
| 16 |
+
self.crop=crop
|
| 17 |
+
def forward(self,x):
|
| 18 |
+
x=self.pretrain_model(x)
|
| 19 |
+
out=self.mlp(x[:,self.crop:-self.crop,:])
|
| 20 |
+
return out
|
| 21 |
+
|
| 22 |
+
def build_cage_model(args):
|
| 23 |
+
pretrain_model=build_track_model(args)
|
| 24 |
+
model=Downstream_cage_model(
|
| 25 |
+
pretrain_model=pretrain_model,
|
| 26 |
+
embed_dim=args.embed_dim,
|
| 27 |
+
crop=args.crop
|
| 28 |
+
)
|
| 29 |
+
return model
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
# import os,sys
|
| 43 |
+
# # import inspect
|
| 44 |
+
# # currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
|
| 45 |
+
# # parentdir = os.path.dirname(currentdir)
|
| 46 |
+
# # sys.path.insert(0, parentdir)
|
| 47 |
+
# from pretrain.track.layers import AttentionPool,Enformer,CNN
|
| 48 |
+
# from pretrain.track.transformers import Transformer
|
| 49 |
+
# from einops.layers.torch import Rearrange
|
| 50 |
+
# from einops import rearrange
|
| 51 |
+
# import torch
|
| 52 |
+
# import torch.nn as nn
|
| 53 |
+
# import torch.nn.functional as F
|
| 54 |
+
#
|
| 55 |
+
#
|
| 56 |
+
# class Convblock(nn.Module):
|
| 57 |
+
# def __init__(self,in_channel,kernel_size,dilate_size,dropout=0.1):
|
| 58 |
+
# super().__init__()
|
| 59 |
+
# self.conv=nn.Sequential(
|
| 60 |
+
# nn.Conv2d(
|
| 61 |
+
# in_channel, in_channel,
|
| 62 |
+
# kernel_size, padding=self.pad(kernel_size, dilate_size),
|
| 63 |
+
# dilation=dilate_size),
|
| 64 |
+
# nn.GroupNorm(16, in_channel),
|
| 65 |
+
# nn.Dropout(dropout)
|
| 66 |
+
# )
|
| 67 |
+
# def pad(self,kernelsize, dialte_size):
|
| 68 |
+
# return (kernelsize - 1) * dialte_size // 2
|
| 69 |
+
# def symmetric(self,x):
|
| 70 |
+
# return (x + x.permute(0,1,3,2)) / 2
|
| 71 |
+
# def forward(self,x):
|
| 72 |
+
# identity=x
|
| 73 |
+
# out=self.conv(x)
|
| 74 |
+
# x=out+identity
|
| 75 |
+
# x=self.symmetric(x)
|
| 76 |
+
# return F.relu(x)
|
| 77 |
+
#
|
| 78 |
+
# class dilated_tower(nn.Module):
|
| 79 |
+
# def __init__(self,embed_dim,in_channel=48,kernel_size=9,dilate_rate=4):
|
| 80 |
+
# super().__init__()
|
| 81 |
+
# dilate_convs=[]
|
| 82 |
+
# for i in range(dilate_rate+1):
|
| 83 |
+
# dilate_convs.append(
|
| 84 |
+
# Convblock(in_channel,kernel_size=kernel_size,dilate_size=2**i))
|
| 85 |
+
#
|
| 86 |
+
# self.cnn=nn.Sequential(
|
| 87 |
+
# Rearrange('b l n d -> b d l n'),
|
| 88 |
+
# nn.Conv2d(embed_dim, in_channel, kernel_size=1),
|
| 89 |
+
# *dilate_convs,
|
| 90 |
+
# nn.Conv2d(in_channel, in_channel, kernel_size=1),
|
| 91 |
+
# Rearrange('b d l n -> b l n d'),
|
| 92 |
+
# )
|
| 93 |
+
# def forward(self,x,crop):
|
| 94 |
+
# x=self.cnn(x)
|
| 95 |
+
# x=x[:,crop:-crop,crop:-crop,:]
|
| 96 |
+
# return x
|
| 97 |
+
#
|
| 98 |
+
#
|
| 99 |
+
# class Tranmodel(nn.Module):
|
| 100 |
+
# def __init__(self, backbone, transfomer):
|
| 101 |
+
# super().__init__()
|
| 102 |
+
# self.backbone = backbone
|
| 103 |
+
# self.transformer = transfomer
|
| 104 |
+
# hidden_dim = transfomer.d_model
|
| 105 |
+
# self.input_proj = nn.Conv1d(backbone.num_channels, hidden_dim, kernel_size=1)
|
| 106 |
+
# def forward(self, input):
|
| 107 |
+
# input=rearrange(input,'b n c l -> (b n) c l')
|
| 108 |
+
# src = self.backbone(input)
|
| 109 |
+
# src=self.input_proj(src)
|
| 110 |
+
# src = self.transformer(src)
|
| 111 |
+
# return src
|
| 112 |
+
#
|
| 113 |
+
# class finetunemodel(nn.Module):
|
| 114 |
+
# def __init__(self, pretrain_model, hidden_dim, embed_dim, bins, crop=25):
|
| 115 |
+
# super().__init__()
|
| 116 |
+
# self.pretrain_model = pretrain_model
|
| 117 |
+
# self.bins = bins
|
| 118 |
+
# self.crop = crop
|
| 119 |
+
# self.attention_pool = AttentionPool(hidden_dim)
|
| 120 |
+
# self.project = nn.Sequential(
|
| 121 |
+
# Rearrange('(b n) c -> b c n', n=bins),
|
| 122 |
+
# nn.Conv1d(hidden_dim, hidden_dim, kernel_size=9, padding=4, groups=hidden_dim),
|
| 123 |
+
# nn.InstanceNorm1d(hidden_dim, affine=True),
|
| 124 |
+
# nn.Conv1d(hidden_dim, embed_dim, kernel_size=1),
|
| 125 |
+
# nn.ReLU(inplace=True),
|
| 126 |
+
# nn.Dropout(0.2)
|
| 127 |
+
# )
|
| 128 |
+
# self.transformer = Enformer(dim=embed_dim, depth=4, heads=6)
|
| 129 |
+
# self.prediction_head = nn.Sequential(
|
| 130 |
+
# nn.Linear(embed_dim, 1)
|
| 131 |
+
# )
|
| 132 |
+
#
|
| 133 |
+
#
|
| 134 |
+
# def forward(self, x):
|
| 135 |
+
# # x = rearrange(x, 'b n c l -> (b n) c l')
|
| 136 |
+
# x = self.pretrain_model(x)
|
| 137 |
+
# x = self.attention_pool(x)
|
| 138 |
+
# x = self.project(x)
|
| 139 |
+
# x = rearrange(x, 'b c n -> b n c')
|
| 140 |
+
# x = self.transformer(x)
|
| 141 |
+
# x = self.prediction_head(x[:, self.crop:-self.crop, :])
|
| 142 |
+
# return x
|
| 143 |
+
#
|
| 144 |
+
# def build_backbone():
|
| 145 |
+
# model = CNN()
|
| 146 |
+
# return model
|
| 147 |
+
# def build_transformer(args):
|
| 148 |
+
# return Transformer(
|
| 149 |
+
# d_model=args.hidden_dim,
|
| 150 |
+
# dropout=args.dropout,
|
| 151 |
+
# nhead=args.nheads,
|
| 152 |
+
# dim_feedforward=args.dim_feedforward,
|
| 153 |
+
# num_encoder_layers=args.enc_layers,
|
| 154 |
+
# num_decoder_layers=args.dec_layers
|
| 155 |
+
# )
|
| 156 |
+
# def build_cage_model(args):
|
| 157 |
+
# backbone = build_backbone()
|
| 158 |
+
# transformer = build_transformer(args)
|
| 159 |
+
# pretrain_model = Tranmodel(
|
| 160 |
+
# backbone=backbone,
|
| 161 |
+
# transfomer=transformer,
|
| 162 |
+
# )
|
| 163 |
+
#
|
| 164 |
+
# model=finetunemodel(pretrain_model,hidden_dim=args.hidden_dim,embed_dim=args.embed_dim,
|
| 165 |
+
# bins=args.bins,crop=args.crop)
|
| 166 |
+
# return model
|