Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -5,18 +5,16 @@ import numpy as np
|
|
| 5 |
from moviepy.editor import *
|
| 6 |
from share_btn import community_icon_html, loading_icon_html, share_js
|
| 7 |
|
| 8 |
-
from diffusers import StableDiffusionInstructPix2PixPipeline
|
| 9 |
import torch
|
| 10 |
from PIL import Image
|
| 11 |
import time
|
| 12 |
import psutil
|
|
|
|
| 13 |
import random
|
| 14 |
|
| 15 |
|
| 16 |
pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained("timbrooks/instruct-pix2pix", torch_dtype=torch.float16, safety_checker=None)
|
| 17 |
-
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
| 18 |
-
pipe.enable_xformers_memory_efficient_attention()
|
| 19 |
-
pipe.unet.to(memory_format=torch.channels_last)
|
| 20 |
|
| 21 |
device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶"
|
| 22 |
|
|
@@ -24,37 +22,37 @@ if torch.cuda.is_available():
|
|
| 24 |
pipe = pipe.to("cuda")
|
| 25 |
|
| 26 |
|
| 27 |
-
def pix2pix(
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
|
| 59 |
|
| 60 |
|
|
@@ -120,7 +118,8 @@ def infer(prompt,video_in, seed_in, trim_value):
|
|
| 120 |
print("set stop frames to: " + str(n_frame))
|
| 121 |
|
| 122 |
for i in frames_list[0:int(n_frame)]:
|
| 123 |
-
|
|
|
|
| 124 |
print(pix2pix_img)
|
| 125 |
image = Image.open(pix2pix_img)
|
| 126 |
rgb_im = image.convert("RGB")
|
|
|
|
| 5 |
from moviepy.editor import *
|
| 6 |
from share_btn import community_icon_html, loading_icon_html, share_js
|
| 7 |
|
| 8 |
+
from diffusers import StableDiffusionInstructPix2PixPipeline
|
| 9 |
import torch
|
| 10 |
from PIL import Image
|
| 11 |
import time
|
| 12 |
import psutil
|
| 13 |
+
import math
|
| 14 |
import random
|
| 15 |
|
| 16 |
|
| 17 |
pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained("timbrooks/instruct-pix2pix", torch_dtype=torch.float16, safety_checker=None)
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶"
|
| 20 |
|
|
|
|
| 22 |
pipe = pipe.to("cuda")
|
| 23 |
|
| 24 |
|
| 25 |
+
def pix2pix(
|
| 26 |
+
input_image: Image.Image,
|
| 27 |
+
instruction: str,
|
| 28 |
+
steps: int,
|
| 29 |
+
randomize_seed: bool,
|
| 30 |
+
seed: int,
|
| 31 |
+
randomize_cfg: bool,
|
| 32 |
+
text_cfg_scale: float,
|
| 33 |
+
image_cfg_scale: float,
|
| 34 |
+
):
|
| 35 |
+
seed = random.randint(0, 100000) if randomize_seed else seed
|
| 36 |
+
text_cfg_scale = round(random.uniform(6.0, 9.0), ndigits=2) if randomize_cfg else text_cfg_scale
|
| 37 |
+
image_cfg_scale = round(random.uniform(1.2, 1.8), ndigits=2) if randomize_cfg else image_cfg_scale
|
| 38 |
+
|
| 39 |
+
width, height = input_image.size
|
| 40 |
+
factor = 512 / max(width, height)
|
| 41 |
+
factor = math.ceil(min(width, height) * factor / 64) * 64 / min(width, height)
|
| 42 |
+
width = int((width * factor) // 64) * 64
|
| 43 |
+
height = int((height * factor) // 64) * 64
|
| 44 |
+
input_image = ImageOps.fit(input_image, (width, height), method=Image.Resampling.LANCZOS)
|
| 45 |
+
|
| 46 |
+
if instruction == "":
|
| 47 |
+
return [input_image, seed]
|
| 48 |
+
|
| 49 |
+
generator = torch.manual_seed(seed)
|
| 50 |
+
edited_image = pipe(
|
| 51 |
+
instruction, image=input_image,
|
| 52 |
+
guidance_scale=text_cfg_scale, image_guidance_scale=image_cfg_scale,
|
| 53 |
+
num_inference_steps=steps, generator=generator,
|
| 54 |
+
).images[0]
|
| 55 |
+
return edited_image
|
| 56 |
|
| 57 |
|
| 58 |
|
|
|
|
| 118 |
print("set stop frames to: " + str(n_frame))
|
| 119 |
|
| 120 |
for i in frames_list[0:int(n_frame)]:
|
| 121 |
+
pil_i = Image.open(i)
|
| 122 |
+
pix2pix_img = pix2pix(pil_i, prompt, 50, False, seed_in, False, 7.5, 1.5)
|
| 123 |
print(pix2pix_img)
|
| 124 |
image = Image.open(pix2pix_img)
|
| 125 |
rgb_im = image.convert("RGB")
|