Spaces:
Sleeping
Sleeping
File size: 4,654 Bytes
777494f 9b5015e be58766 90c809d 777494f 05f3df8 8b65f87 777494f 22d0be8 20df700 22d0be8 90c809d 22d0be8 90c809d 22f5e99 90c809d 22d0be8 01dcddf f2d26c7 01dcddf 8b65f87 90c809d 777494f e0dea3f 01dcddf 90c809d 8b65f87 90c809d 8b65f87 777494f 90c809d 6f85941 90c809d 6f85941 90c809d 22d0be8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
import gradio as gr
import networkx as nx
import matplotlib.pyplot as plt
import uuid
import os
import textwrap
import requests
import pandas as pd
api_key = os.getenv("AIRT_KEY")
AIRT_DBASEx = os.getenv("AIRT_DBASE")
AIRT_TABLEx = os.getenv("AIRT_TABLE")
# Use Directed Graph to represent relationships
G = nx.DiGraph() # Fix: Use DiGraph instead of Graph
url = f"https://api.airtable.com/v0/{AIRT_DBASEx}/{AIRT_TABLEx}"
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
# Cargar el JSON de normativas
def cargar_normativas():
with open('normativas.json', 'r', encoding='utf-8') as f:
return json.load(f)
# Cargar la lista de estudiantes
def cargar_estudiantes():
with open('estudiantes.json', 'r', encoding='utf-8') as f:
return json.load(f)
def cargar_desde_airtable():
response = requests.get(url, headers=headers)
if response.status_code != 200:
print(f"Error: {response.status_code} - {response.text}") # Debugging info
return pd.DataFrame(columns=["Nombre", "Enfoque", "Norma", "Texto_HF"]) # Return empty DataFrame
records = response.json().get("records", [])
# Compact list comprehension to extract data
aportes = [
[record["fields"].get("Nombre", ""),
record["fields"].get("Enfoque", ""),
record["fields"].get("Norma", ""),
record["fields"].get("Texto_HF", "")] for record in records
]
return pd.DataFrame(aportes, columns=["Nombre", "Enfoque", "Norma", "Texto_HF"])
def wrap_text(text, width=10):
return "\n".join(textwrap.wrap(text, width=width))
def inicializar_grafo():
df = cargar_desde_airtable()
# Add base nodes for categories
G.add_node("Determinista", color='red')
G.add_node("Sistémico", color='blue')
# Process each row and add nodes/edges
for _, row in df.iterrows():
nombre, enfoque, norma, texto = row["Nombre"], row["Enfoque"], row["Norma"], row["Texto_HF"]
textox = wrap_text(f"{nombre}: {texto}")
if not G.has_node(norma):
G.add_node(norma, color='gray')
if not G.has_edge(norma, enfoque):
G.add_edge(norma, enfoque, label=textox)
def guardar_en_airtable(nombre, enfoque, norma, texto):
data = {"fields": {"Nombre": nombre, "Enfoque": enfoque, "Norma": norma, "Texto_HF": texto}}
requests.post(url, headers=headers, json=data)
def agregar_aporte(nombre, enfoque, norma, texto):
textox = wrap_text(f"{nombre}: {texto}")
if not G.has_node(norma):
G.add_node(norma, color='gray')
if not G.has_edge(norma, enfoque):
G.add_edge(norma, enfoque, label=textox)
guardar_en_airtable(nombre, enfoque, norma, texto)
return visualizar_grafo()
def visualizar_grafo():
plt.figure(figsize=(8, 8))
pos = nx.spring_layout(G)
edge_labels = nx.get_edge_attributes(G, 'label')
nx.draw(G, pos, with_labels=True, node_color='lightblue', edge_color='gray', node_size=2000, font_size=10)
nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels, font_size=8)
plt.title("Red de Aportes")
plt.savefig("graph.png")
plt.close()
return "graph.png"
inicializar_grafo()
normativas = cargar_normativas()
estudiantes = cargar_estudiantes()
norm_options = [f"{norm['nombre']} {norm['id']}" for norm in normativas["normativa_peruana_gestion_riesgos"]]
student_names = [student["nombre"] for student in estudiantes["estudiantes"]]
iface = gr.Blocks()
with iface:
gr.Markdown("# Foro Dinámico con Visualización de Red")
with gr.Row():
gr.Markdown("## Selecciona una Normativa:")
normativa_dropdown = gr.Dropdown(choices=norm_options, label="Normativas")
normativa_html = gr.HTML()
normativa_dropdown.change(fn=mostrar_detalles, inputs=normativa_dropdown, outputs=[normativa_html, None])
with gr.Row():
gr.Markdown("## Red de Aportes:")
graph_output = gr.Image(visualizar_grafo(), label="Red de Aportes")
with gr.Row():
nombre = gr.Dropdown(choices=student_names, label="Nombre del Estudiante")
enfoque = gr.Radio(["Determinista", "Sistémico"], label="Enfoque")
with gr.Row():
norma_field = gr.Textbox(label="Norma", interactive=False) # Read-only
texto = gr.Textbox(label="Tu aporte")
submit_button = gr.Button("Agregar Aporte")
normativa_dropdown.change(fn=mostrar_detalles, inputs=normativa_dropdown, outputs=[normativa_html, norma_field])
submit_button.click(fn=agregar_aporte, inputs=[nombre, enfoque, norma_field, texto], outputs=graph_output)
iface.launch(share=True) |