Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- W2_assignment_streamlit.py +162 -0
- requirements.txt +6 -0
W2_assignment_streamlit.py
ADDED
|
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
# Question: Does a higher bill amount lead to a lower tip percentage?
|
| 3 |
+
|
| 4 |
+
import numpy as np
|
| 5 |
+
import seaborn as sns
|
| 6 |
+
import streamlit as st
|
| 7 |
+
import altair as alt
|
| 8 |
+
|
| 9 |
+
st.set_page_config(page_title="Tips Explorer: Bill vs Tip %", page_icon="💸", layout="wide")
|
| 10 |
+
|
| 11 |
+
# 1) Data loading
|
| 12 |
+
@st.cache_data
|
| 13 |
+
def load_data():
|
| 14 |
+
df = sns.load_dataset("tips").copy()
|
| 15 |
+
df["tip_pct"] = df["tip"] / df["total_bill"] * 100
|
| 16 |
+
keep = ["total_bill", "tip", "tip_pct", "sex", "smoker", "day", "time", "size"]
|
| 17 |
+
df = df[keep].dropna()
|
| 18 |
+
return df
|
| 19 |
+
|
| 20 |
+
tips = load_data()
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
# 2) Title & problem statement
|
| 24 |
+
st.title("💸 Do Bigger Bills Mean Smaller Tip % ?")
|
| 25 |
+
st.caption("Explore whether higher bills are associated with lower tipping percentages.")
|
| 26 |
+
|
| 27 |
+
st.markdown(
|
| 28 |
+
"> **User question:** Does a higher bill amount lead to a lower tip percentage?"
|
| 29 |
+
)
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
# 3) Sidebar controls (≥ 2)
|
| 33 |
+
st.sidebar.header("Filters")
|
| 34 |
+
|
| 35 |
+
# (a) bill
|
| 36 |
+
bill_min = float(tips["total_bill"].min())
|
| 37 |
+
bill_max = float(tips["total_bill"].max())
|
| 38 |
+
bill_range = st.sidebar.slider(
|
| 39 |
+
"Total bill range ($)",
|
| 40 |
+
min_value=round(bill_min, 1),
|
| 41 |
+
max_value=round(bill_max, 1),
|
| 42 |
+
value=(round(bill_min, 1), round(bill_max, 1)),
|
| 43 |
+
step=0.5,
|
| 44 |
+
)
|
| 45 |
+
|
| 46 |
+
# (b) weekdays
|
| 47 |
+
days = ["Thur", "Fri", "Sat", "Sun"]
|
| 48 |
+
day_choice = st.sidebar.multiselect("Day(s) of week", days, default=days)
|
| 49 |
+
|
| 50 |
+
# (c) mealtime
|
| 51 |
+
time_choice = st.sidebar.radio("Meal", options=["All", "Lunch", "Dinner"], index=0)
|
| 52 |
+
|
| 53 |
+
# (d) Outlier Removal
|
| 54 |
+
clip_outliers = st.sidebar.checkbox("Remove extreme tip % (top/bottom 1%)", value=True)
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
# 4) Apply filters
|
| 58 |
+
df = tips[
|
| 59 |
+
(tips["total_bill"] >= bill_range[0]) &
|
| 60 |
+
(tips["total_bill"] <= bill_range[1]) &
|
| 61 |
+
(tips["day"].isin(day_choice))
|
| 62 |
+
].copy()
|
| 63 |
+
|
| 64 |
+
if time_choice != "All":
|
| 65 |
+
df = df[df["time"] == time_choice]
|
| 66 |
+
|
| 67 |
+
# Outlier Removal (for More Stable KPIs and Visualizations)
|
| 68 |
+
if clip_outliers and len(df) > 10:
|
| 69 |
+
low, high = np.percentile(df["tip_pct"], [1, 99])
|
| 70 |
+
df = df[(df["tip_pct"] >= low) & (df["tip_pct"] <= high)]
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
# 5) KPIs (≥ 1)
|
| 74 |
+
col1, col2, col3 = st.columns(3)
|
| 75 |
+
if len(df) > 0:
|
| 76 |
+
avg_tip_pct = df["tip_pct"].mean()
|
| 77 |
+
med_tip_pct = df["tip_pct"].median()
|
| 78 |
+
corr = df["total_bill"].corr(df["tip_pct"]) # Pearson Correlation
|
| 79 |
+
|
| 80 |
+
col1.metric("Average Tip %", f"{avg_tip_pct:.1f}%")
|
| 81 |
+
col2.metric("Median Tip %", f"{med_tip_pct:.1f}%")
|
| 82 |
+
col3.metric("Corr( Bill , Tip % )", f"{corr:+.2f}")
|
| 83 |
+
else:
|
| 84 |
+
col1.metric("Average Tip %", "–")
|
| 85 |
+
col2.metric("Median Tip %", "–")
|
| 86 |
+
col3.metric("Corr( Bill , Tip % )", "–")
|
| 87 |
+
|
| 88 |
+
st.divider()
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
# 6) Visualization (≥ 1)
|
| 92 |
+
st.subheader("Tip Percentage vs. Bill Amount")
|
| 93 |
+
|
| 94 |
+
if len(df) == 0:
|
| 95 |
+
st.info("No data under current filters. Try expanding the bill range or selecting more days.")
|
| 96 |
+
else:
|
| 97 |
+
base = alt.Chart(df).properties(width=800, height=420)
|
| 98 |
+
|
| 99 |
+
scatter = (
|
| 100 |
+
base.mark_circle(size=70, opacity=0.65, color="#4C78A8")
|
| 101 |
+
.encode(
|
| 102 |
+
x=alt.X("total_bill:Q", title="Total Bill ($)"),
|
| 103 |
+
y=alt.Y("tip_pct:Q", title="Tip Percentage (%)"),
|
| 104 |
+
tooltip=[
|
| 105 |
+
alt.Tooltip("total_bill:Q", title="Bill ($)", format=".2f"),
|
| 106 |
+
alt.Tooltip("tip_pct:Q", title="Tip %", format=".1f"),
|
| 107 |
+
alt.Tooltip("day:N", title="Day"),
|
| 108 |
+
alt.Tooltip("time:N", title="Meal"),
|
| 109 |
+
alt.Tooltip("size:Q", title="Party Size"),
|
| 110 |
+
],
|
| 111 |
+
)
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
# Used Altair's built-in regression function, which automatically plots the trend line
|
| 115 |
+
reg = (
|
| 116 |
+
base.transform_regression("total_bill", "tip_pct")
|
| 117 |
+
.mark_line(color="#E45756", size=3)
|
| 118 |
+
.encode(x="total_bill:Q", y="tip_pct:Q")
|
| 119 |
+
)
|
| 120 |
+
|
| 121 |
+
chart = (scatter + reg).resolve_scale(y="independent")
|
| 122 |
+
|
| 123 |
+
st.altair_chart(chart, use_container_width=True)
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
# 7) Dynamic insight text
|
| 127 |
+
def insight_text(n, r, avg):
|
| 128 |
+
if n == 0:
|
| 129 |
+
return "No data available under the current filters."
|
| 130 |
+
|
| 131 |
+
# Turn the correlation (r) into a plain-English explanation
|
| 132 |
+
# For example:
|
| 133 |
+
# Large r → Bigger bills usually mean higher tip percentages
|
| 134 |
+
# Small r → Little to no relationship
|
| 135 |
+
# Negative r → Bigger bills usually mean lower tip percentages
|
| 136 |
+
if r <= -0.20:
|
| 137 |
+
trend = "a **negative** association — larger bills tend to have **lower** tip percentages."
|
| 138 |
+
elif r >= 0.20:
|
| 139 |
+
trend = "a **positive** association — larger bills tend to have **higher** tip percentages."
|
| 140 |
+
else:
|
| 141 |
+
trend = "**little to no clear** linear association between bill size and tip percentage."
|
| 142 |
+
|
| 143 |
+
return (
|
| 144 |
+
f"**Insight:** Based on the current selection (n = {n}), the correlation between "
|
| 145 |
+
f"total bill and tip percentage is **{r:+.2f}**, suggesting {trend} "
|
| 146 |
+
f"The average tip percentage in this selection is **{avg:.1f}%**."
|
| 147 |
+
)
|
| 148 |
+
|
| 149 |
+
st.markdown(
|
| 150 |
+
insight_text(
|
| 151 |
+
len(df),
|
| 152 |
+
0.0 if len(df) == 0 else df["total_bill"].corr(df["tip_pct"]),
|
| 153 |
+
0.0 if len(df) == 0 else df["tip_pct"].mean(),
|
| 154 |
+
)
|
| 155 |
+
)
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
# 8) Footnote & performance hint
|
| 159 |
+
st.caption(
|
| 160 |
+
"Notes: correlation is computed with Pearson’s r. "
|
| 161 |
+
"Extreme tip % values (top/bottom 1%) can be optionally removed for stability."
|
| 162 |
+
)
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
streamlit>=1.29
|
| 2 |
+
pandas
|
| 3 |
+
numpy
|
| 4 |
+
seaborn>=0.13
|
| 5 |
+
matplotlib
|
| 6 |
+
altair
|