Spaces:
Runtime error
Runtime error
| # Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py | |
| import tqdm | |
| import inspect | |
| from typing import Callable, List, Optional, Union | |
| from dataclasses import dataclass | |
| import numpy as np | |
| import torch | |
| from diffusers.utils import is_accelerate_available | |
| from packaging import version | |
| from transformers import CLIPTextModel, CLIPTokenizer | |
| import torchvision.transforms.functional as TF | |
| from diffusers.configuration_utils import FrozenDict | |
| from diffusers.models import AutoencoderKL | |
| from diffusers import DiffusionPipeline | |
| from diffusers.schedulers import ( | |
| DDIMScheduler, | |
| DPMSolverMultistepScheduler, | |
| EulerAncestralDiscreteScheduler, | |
| EulerDiscreteScheduler, | |
| LMSDiscreteScheduler, | |
| PNDMScheduler, | |
| ) | |
| from diffusers.utils import deprecate, logging, BaseOutput | |
| from einops import rearrange | |
| from canonicalize.models.unet import UNet3DConditionModel | |
| from torchvision.transforms import InterpolationMode | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| class CanonicalizationPipeline(DiffusionPipeline): | |
| _optional_components = [] | |
| def __init__( | |
| self, | |
| vae: AutoencoderKL, | |
| text_encoder: CLIPTextModel, | |
| tokenizer: CLIPTokenizer, | |
| unet: UNet3DConditionModel, | |
| scheduler: Union[ | |
| DDIMScheduler, | |
| PNDMScheduler, | |
| LMSDiscreteScheduler, | |
| EulerDiscreteScheduler, | |
| EulerAncestralDiscreteScheduler, | |
| DPMSolverMultistepScheduler, | |
| ], | |
| ref_unet = None, | |
| feature_extractor=None, | |
| image_encoder=None | |
| ): | |
| super().__init__() | |
| self.ref_unet = ref_unet | |
| self.feature_extractor = feature_extractor | |
| self.image_encoder = image_encoder | |
| if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1: | |
| deprecation_message = ( | |
| f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`" | |
| f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure " | |
| "to update the config accordingly as leaving `steps_offset` might led to incorrect results" | |
| " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," | |
| " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" | |
| " file" | |
| ) | |
| deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False) | |
| new_config = dict(scheduler.config) | |
| new_config["steps_offset"] = 1 | |
| scheduler._internal_dict = FrozenDict(new_config) | |
| if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True: | |
| deprecation_message = ( | |
| f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`." | |
| " `clip_sample` should be set to False in the configuration file. Please make sure to update the" | |
| " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in" | |
| " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very" | |
| " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file" | |
| ) | |
| deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False) | |
| new_config = dict(scheduler.config) | |
| new_config["clip_sample"] = False | |
| scheduler._internal_dict = FrozenDict(new_config) | |
| is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse( | |
| version.parse(unet.config._diffusers_version).base_version | |
| ) < version.parse("0.9.0.dev0") | |
| is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64 | |
| if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64: | |
| deprecation_message = ( | |
| "The configuration file of the unet has set the default `sample_size` to smaller than" | |
| " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the" | |
| " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-" | |
| " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5" | |
| " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the" | |
| " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`" | |
| " in the config might lead to incorrect results in future versions. If you have downloaded this" | |
| " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for" | |
| " the `unet/config.json` file" | |
| ) | |
| deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False) | |
| new_config = dict(unet.config) | |
| new_config["sample_size"] = 64 | |
| unet._internal_dict = FrozenDict(new_config) | |
| self.register_modules( | |
| vae=vae, | |
| text_encoder=text_encoder, | |
| tokenizer=tokenizer, | |
| unet=unet, | |
| scheduler=scheduler, | |
| ) | |
| self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
| def enable_vae_slicing(self): | |
| self.vae.enable_slicing() | |
| def disable_vae_slicing(self): | |
| self.vae.disable_slicing() | |
| def enable_sequential_cpu_offload(self, gpu_id=0): | |
| if is_accelerate_available(): | |
| from accelerate import cpu_offload | |
| else: | |
| raise ImportError("Please install accelerate via `pip install accelerate`") | |
| device = torch.device(f"cuda:{gpu_id}") | |
| for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]: | |
| if cpu_offloaded_model is not None: | |
| cpu_offload(cpu_offloaded_model, device) | |
| def _execution_device(self): | |
| if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"): | |
| return self.device | |
| for module in self.unet.modules(): | |
| if ( | |
| hasattr(module, "_hf_hook") | |
| and hasattr(module._hf_hook, "execution_device") | |
| and module._hf_hook.execution_device is not None | |
| ): | |
| return torch.device(module._hf_hook.execution_device) | |
| return self.device | |
| def _encode_image(self, image_pil, device, num_images_per_prompt, do_classifier_free_guidance, img_proj=None): | |
| dtype = next(self.image_encoder.parameters()).dtype | |
| # image encoding | |
| clip_image_mean = torch.as_tensor(self.feature_extractor.image_mean)[:,None,None].to(device, dtype=torch.float32) | |
| clip_image_std = torch.as_tensor(self.feature_extractor.image_std)[:,None,None].to(device, dtype=torch.float32) | |
| imgs_in_proc = TF.resize(image_pil, (self.feature_extractor.crop_size['height'], self.feature_extractor.crop_size['width']), interpolation=InterpolationMode.BICUBIC) | |
| # do the normalization in float32 to preserve precision | |
| imgs_in_proc = ((imgs_in_proc.float() - clip_image_mean) / clip_image_std).to(dtype) | |
| if img_proj is None: | |
| # (B*Nv, 1, 768) | |
| image_embeddings = self.image_encoder(imgs_in_proc).image_embeds.unsqueeze(1) | |
| # duplicate image embeddings for each generation per prompt, using mps friendly method | |
| # Note: repeat differently from official pipelines | |
| # B1B2B3B4 -> B1B2B3B4B1B2B3B4 | |
| bs_embed, seq_len, _ = image_embeddings.shape | |
| image_embeddings = image_embeddings.repeat(num_images_per_prompt, 1, 1) | |
| if do_classifier_free_guidance: | |
| negative_prompt_embeds = torch.zeros_like(image_embeddings) | |
| # For classifier free guidance, we need to do two forward passes. | |
| # Here we concatenate the unconditional and text embeddings into a single batch | |
| # to avoid doing two forward passes | |
| image_embeddings = torch.cat([negative_prompt_embeds, image_embeddings]) | |
| else: | |
| if do_classifier_free_guidance: | |
| negative_image_proc = torch.zeros_like(imgs_in_proc) | |
| # For classifier free guidance, we need to do two forward passes. | |
| # Here we concatenate the unconditional and text embeddings into a single batch | |
| # to avoid doing two forward passes | |
| imgs_in_proc = torch.cat([negative_image_proc, imgs_in_proc]) | |
| image_embeds = image_encoder(imgs_in_proc, output_hidden_states=True).hidden_states[-2] | |
| image_embeddings = img_proj(image_embeds) | |
| image_latents = self.vae.encode(image_pil* 2.0 - 1.0).latent_dist.mode() * self.vae.config.scaling_factor | |
| # Note: repeat differently from official pipelines | |
| # B1B2B3B4 -> B1B2B3B4B1B2B3B4 | |
| image_latents = image_latents.repeat(num_images_per_prompt, 1, 1, 1) | |
| return image_embeddings, image_latents | |
| def _encode_prompt(self, prompt, device, num_videos_per_prompt, do_classifier_free_guidance, negative_prompt): | |
| batch_size = len(prompt) if isinstance(prompt, list) else 1 | |
| text_inputs = self.tokenizer( | |
| prompt, | |
| padding="max_length", | |
| max_length=self.tokenizer.model_max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids | |
| untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
| if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): | |
| removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]) | |
| logger.warning( | |
| "The following part of your input was truncated because CLIP can only handle sequences up to" | |
| f" {self.tokenizer.model_max_length} tokens: {removed_text}" | |
| ) | |
| if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
| attention_mask = text_inputs.attention_mask.to(device) | |
| else: | |
| attention_mask = None | |
| text_embeddings = self.text_encoder( | |
| text_input_ids.to(device), | |
| attention_mask=attention_mask, | |
| ) | |
| text_embeddings = text_embeddings[0] | |
| # duplicate text embeddings for each generation per prompt, using mps friendly method | |
| bs_embed, seq_len, _ = text_embeddings.shape | |
| text_embeddings = text_embeddings.repeat(1, num_videos_per_prompt, 1) | |
| text_embeddings = text_embeddings.view(bs_embed * num_videos_per_prompt, seq_len, -1) | |
| # get unconditional embeddings for classifier free guidance | |
| if do_classifier_free_guidance: | |
| uncond_tokens: List[str] | |
| if negative_prompt is None: | |
| uncond_tokens = [""] * batch_size | |
| elif type(prompt) is not type(negative_prompt): | |
| raise TypeError( | |
| f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
| f" {type(prompt)}." | |
| ) | |
| elif isinstance(negative_prompt, str): | |
| uncond_tokens = [negative_prompt] | |
| elif batch_size != len(negative_prompt): | |
| raise ValueError( | |
| f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
| f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
| " the batch size of `prompt`." | |
| ) | |
| else: | |
| uncond_tokens = negative_prompt | |
| max_length = text_input_ids.shape[-1] | |
| uncond_input = self.tokenizer( | |
| uncond_tokens, | |
| padding="max_length", | |
| max_length=max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
| attention_mask = uncond_input.attention_mask.to(device) | |
| else: | |
| attention_mask = None | |
| uncond_embeddings = self.text_encoder( | |
| uncond_input.input_ids.to(device), | |
| attention_mask=attention_mask, | |
| ) | |
| uncond_embeddings = uncond_embeddings[0] | |
| # duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
| seq_len = uncond_embeddings.shape[1] | |
| uncond_embeddings = uncond_embeddings.repeat(1, num_videos_per_prompt, 1) | |
| uncond_embeddings = uncond_embeddings.view(batch_size * num_videos_per_prompt, seq_len, -1) | |
| # For classifier free guidance, we need to do two forward passes. | |
| # Here we concatenate the unconditional and text embeddings into a single batch | |
| # to avoid doing two forward passes | |
| text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) | |
| return text_embeddings | |
| def decode_latents(self, latents): | |
| video_length = latents.shape[2] | |
| latents = 1 / 0.18215 * latents | |
| latents = rearrange(latents, "b c f h w -> (b f) c h w") | |
| video = self.vae.decode(latents).sample | |
| video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length) | |
| video = (video / 2 + 0.5).clamp(0, 1) | |
| # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16 | |
| video = video.cpu().float().numpy() | |
| return video | |
| def prepare_extra_step_kwargs(self, generator, eta): | |
| # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
| # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
| # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
| # and should be between [0, 1] | |
| accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| extra_step_kwargs = {} | |
| if accepts_eta: | |
| extra_step_kwargs["eta"] = eta | |
| # check if the scheduler accepts generator | |
| accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| if accepts_generator: | |
| extra_step_kwargs["generator"] = generator | |
| return extra_step_kwargs | |
| def check_inputs(self, prompt, height, width, callback_steps): | |
| if not isinstance(prompt, str) and not isinstance(prompt, list): | |
| raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
| if height % 8 != 0 or width % 8 != 0: | |
| raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | |
| if (callback_steps is None) or ( | |
| callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) | |
| ): | |
| raise ValueError( | |
| f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | |
| f" {type(callback_steps)}." | |
| ) | |
| def prepare_latents(self, batch_size, num_channels_latents, video_length, height, width, dtype, device, generator, latents=None): | |
| shape = (batch_size, num_channels_latents, video_length, height // self.vae_scale_factor, width // self.vae_scale_factor) | |
| if isinstance(generator, list) and len(generator) != batch_size: | |
| raise ValueError( | |
| f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
| f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
| ) | |
| if latents is None: | |
| rand_device = "cpu" if device.type == "mps" else device | |
| if isinstance(generator, list): | |
| shape = (1,) + shape[1:] | |
| latents = [ | |
| torch.randn(shape, generator=generator[i], device=rand_device, dtype=dtype) | |
| for i in range(batch_size) | |
| ] | |
| latents = torch.cat(latents, dim=0).to(device) | |
| else: | |
| latents = torch.randn(shape, generator=generator, device=rand_device, dtype=dtype).to(device) | |
| else: | |
| if latents.shape != shape: | |
| raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") | |
| latents = latents.to(device) | |
| # scale the initial noise by the standard deviation required by the scheduler | |
| latents = latents * self.scheduler.init_noise_sigma | |
| return latents | |
| def __call__( | |
| self, | |
| prompt: Union[str, List[str]], | |
| image: Union[str, List[str]], | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| num_inference_steps: int = 50, | |
| guidance_scale: float = 7.5, | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| num_videos_per_prompt: Optional[int] = 1, | |
| eta: float = 0.0, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| output_type: Optional[str] = "tensor", | |
| return_dict: bool = True, | |
| callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
| callback_steps: Optional[int] = 1, | |
| class_labels = None, | |
| prompt_ids = None, | |
| unet_condition_type = None, | |
| img_proj=None, | |
| use_noise=True, | |
| use_shifted_noise=False, | |
| rescale = 0.7, | |
| **kwargs, | |
| ): | |
| # Default height and width to unet | |
| height = height or self.unet.config.sample_size * self.vae_scale_factor | |
| width = width or self.unet.config.sample_size * self.vae_scale_factor | |
| video_length = 1 | |
| # Check inputs. Raise error if not correct | |
| self.check_inputs(prompt, height, width, callback_steps) | |
| if isinstance(image, list): | |
| batch_size = len(image) | |
| else: | |
| batch_size = image.shape[0] | |
| # Define call parameters | |
| batch_size = 1 if isinstance(prompt, str) else len(prompt) | |
| device = self._execution_device | |
| # device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
| import sys | |
| print(f"PIPELINE Using device!!!!!!!!!!!!: {device}", file=sys.stderr) | |
| # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
| # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
| # corresponds to doing no classifier free guidance. | |
| do_classifier_free_guidance = guidance_scale > 1.0 | |
| # 3. Encode input image | |
| image_embeddings, image_latents = self._encode_image(image, device, num_videos_per_prompt, do_classifier_free_guidance, img_proj=img_proj) #torch.Size([64, 1, 768]) torch.Size([64, 4, 32, 32]) | |
| image_latents = rearrange(image_latents, "(b f) c h w -> b c f h w", f=1) #torch.Size([64, 4, 1, 32, 32]) | |
| # Encode input prompt | |
| text_embeddings = self._encode_prompt( #torch.Size([64, 77, 768]) | |
| prompt, device, num_videos_per_prompt, do_classifier_free_guidance, negative_prompt | |
| ) | |
| # Prepare timesteps | |
| self.scheduler.set_timesteps(num_inference_steps, device=device) | |
| timesteps = self.scheduler.timesteps | |
| # Prepare latent variables | |
| num_channels_latents = self.unet.in_channels | |
| latents = self.prepare_latents( | |
| batch_size * num_videos_per_prompt, | |
| num_channels_latents, | |
| video_length, | |
| height, | |
| width, | |
| text_embeddings.dtype, | |
| device, | |
| generator, | |
| latents, | |
| ) | |
| latents_dtype = latents.dtype | |
| # Prepare extra step kwargs. | |
| extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
| # Denoising loop | |
| num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(tqdm.tqdm(timesteps)): | |
| # expand the latents if we are doing classifier free guidance | |
| latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
| latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
| noise_cond = torch.randn_like(image_latents) | |
| if use_noise: | |
| cond_latents = self.scheduler.add_noise(image_latents, noise_cond, t) | |
| else: | |
| cond_latents = image_latents | |
| cond_latent_model_input = torch.cat([cond_latents] * 2) if do_classifier_free_guidance else cond_latents | |
| cond_latent_model_input = self.scheduler.scale_model_input(cond_latent_model_input, t) | |
| # predict the noise residual | |
| # ref text condition | |
| ref_dict = {} | |
| if self.ref_unet is not None: | |
| noise_pred_cond = self.ref_unet( | |
| cond_latent_model_input, | |
| t, | |
| encoder_hidden_states=text_embeddings.to(torch.float32), | |
| cross_attention_kwargs=dict(mode="w", ref_dict=ref_dict) | |
| ).sample.to(dtype=latents_dtype) | |
| # text condition for unet | |
| text_embeddings_unet = text_embeddings.unsqueeze(1).repeat(1,latents.shape[2],1,1) | |
| text_embeddings_unet = rearrange(text_embeddings_unet, 'B Nv d c -> (B Nv) d c') | |
| # image condition for unet | |
| image_embeddings_unet = image_embeddings.unsqueeze(1).repeat(1,latents.shape[2],1, 1) | |
| image_embeddings_unet = rearrange(image_embeddings_unet, 'B Nv d c -> (B Nv) d c') | |
| encoder_hidden_states_unet_cond = image_embeddings_unet | |
| if self.ref_unet is not None: | |
| noise_pred = self.unet( | |
| latent_model_input.to(torch.float32), | |
| t, | |
| encoder_hidden_states=encoder_hidden_states_unet_cond.to(torch.float32), | |
| cross_attention_kwargs=dict(mode="r", ref_dict=ref_dict, is_cfg_guidance=do_classifier_free_guidance) | |
| ).sample.to(dtype=latents_dtype) | |
| else: | |
| noise_pred = self.unet( | |
| latent_model_input.to(torch.float32), | |
| t, | |
| encoder_hidden_states=encoder_hidden_states_unet_cond.to(torch.float32), | |
| cross_attention_kwargs=dict(mode="n", ref_dict=ref_dict, is_cfg_guidance=do_classifier_free_guidance) | |
| ).sample.to(dtype=latents_dtype) | |
| # perform guidance | |
| if do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| if use_shifted_noise: | |
| # Apply regular classifier-free guidance. | |
| cfg = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
| # Calculate standard deviations. | |
| std_pos = noise_pred_text.std([1,2,3], keepdim=True) | |
| std_cfg = cfg.std([1,2,3], keepdim=True) | |
| # Apply guidance rescale with fused operations. | |
| factor = std_pos / std_cfg | |
| factor = rescale * factor + (1 - rescale) | |
| noise_pred = cfg * factor | |
| else: | |
| noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| noise_pred = rearrange(noise_pred, "(b f) c h w -> b c f h w", f=video_length) | |
| latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
| progress_bar.update() | |
| if callback is not None and i % callback_steps == 0: | |
| callback(i, t, latents) | |
| # Post-processing | |
| video = self.decode_latents(latents) | |
| # Convert to tensor | |
| if output_type == "tensor": | |
| video = torch.from_numpy(video) | |
| return video | |