Spaces:
Runtime error
Runtime error
| import os | |
| import imageio | |
| import numpy as np | |
| import torch | |
| import cv2 | |
| import glob | |
| import matplotlib.pyplot as plt | |
| from PIL import Image | |
| from torchvision.transforms import v2 | |
| from pytorch_lightning import seed_everything | |
| from omegaconf import OmegaConf | |
| from tqdm import tqdm | |
| from slrm.utils.train_util import instantiate_from_config | |
| from slrm.utils.camera_util import ( | |
| FOV_to_intrinsics, | |
| get_circular_camera_poses, | |
| ) | |
| from slrm.utils.mesh_util import save_obj, save_glb | |
| from slrm.utils.infer_util import images_to_video | |
| from pytorch_lightning.utilities.deepspeed import convert_zero_checkpoint_to_fp32_state_dict | |
| device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
| def get_render_cameras(batch_size=1, M=120, radius=2.5, elevation=10.0, is_flexicubes=False): | |
| """ | |
| Get the rendering camera parameters. | |
| """ | |
| c2ws = get_circular_camera_poses(M=M, radius=radius, elevation=elevation) | |
| if is_flexicubes: | |
| cameras = torch.linalg.inv(c2ws) | |
| cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1, 1) | |
| else: | |
| extrinsics = c2ws.flatten(-2) | |
| intrinsics = FOV_to_intrinsics(30.0).unsqueeze(0).repeat(M, 1, 1).float().flatten(-2) | |
| cameras = torch.cat([extrinsics, intrinsics], dim=-1) | |
| cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1) | |
| return cameras | |
| def images_to_video(images, output_dir, fps=30): | |
| # images: (N, C, H, W) | |
| os.makedirs(os.path.dirname(output_dir), exist_ok=True) | |
| frames = [] | |
| for i in range(images.shape[0]): | |
| frame = (images[i].permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8).clip(0, 255) | |
| assert frame.shape[0] == images.shape[2] and frame.shape[1] == images.shape[3], \ | |
| f"Frame shape mismatch: {frame.shape} vs {images.shape}" | |
| assert frame.min() >= 0 and frame.max() <= 255, \ | |
| f"Frame value out of range: {frame.min()} ~ {frame.max()}" | |
| frames.append(frame) | |
| imageio.mimwrite(output_dir, np.stack(frames), fps=fps, codec='h264') | |
| ############################################################################### | |
| # Configuration. | |
| ############################################################################### | |
| seed_everything(0) | |
| config_path = 'configs/mesh-slrm-infer.yaml' | |
| config = OmegaConf.load(config_path) | |
| config_name = os.path.basename(config_path).replace('.yaml', '') | |
| model_config = config.model_config | |
| infer_config = config.infer_config | |
| IS_FLEXICUBES = True if config_name.startswith('mesh') else False | |
| device = torch.device('cuda') | |
| # load reconstruction model | |
| print('Loading reconstruction model ...') | |
| model = instantiate_from_config(model_config) | |
| state_dict = torch.load(infer_config.model_path, map_location='cpu') | |
| model.load_state_dict(state_dict, strict=False) | |
| model = model.to(device) | |
| if IS_FLEXICUBES: | |
| model.init_flexicubes_geometry(device, fovy=30.0, is_ortho=model.is_ortho) | |
| model = model.eval() | |
| print('Loading Finished!') | |
| def make_mesh(mesh_fpath, planes, level=None): | |
| mesh_basename = os.path.basename(mesh_fpath).split('.')[0] | |
| mesh_dirname = os.path.dirname(mesh_fpath) | |
| mesh_glb_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.glb") | |
| with torch.no_grad(): | |
| # get mesh | |
| mesh_out = model.extract_mesh( | |
| planes, | |
| use_texture_map=False, | |
| levels=torch.tensor([level]).to(device), | |
| **infer_config, | |
| ) | |
| vertices, faces, vertex_colors = mesh_out | |
| vertices = vertices[:, [1, 2, 0]] | |
| save_glb(vertices, faces, vertex_colors, mesh_glb_fpath) | |
| save_obj(vertices, faces, vertex_colors, mesh_fpath) | |
| return mesh_fpath, mesh_glb_fpath | |
| def make3d(images, name, output_dir): | |
| input_cameras = torch.tensor(np.load('slrm/cameras.npy')).to(device) | |
| render_cameras = get_render_cameras( | |
| batch_size=1, radius=4.5, elevation=20.0, is_flexicubes=IS_FLEXICUBES).to(device) | |
| images = images.unsqueeze(0).to(device) | |
| images = v2.functional.resize(images, (320, 320), interpolation=3, antialias=True).clamp(0, 1) | |
| mesh_fpath = os.path.join(output_dir, f"{name}.obj") | |
| mesh_basename = os.path.basename(mesh_fpath).split('.')[0] | |
| mesh_dirname = os.path.dirname(mesh_fpath) | |
| video_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.mp4") | |
| with torch.no_grad(): | |
| # get triplane | |
| planes = model.forward_planes(images, input_cameras.float()) | |
| # get video | |
| chunk_size = 20 if IS_FLEXICUBES else 1 | |
| render_size = 512 | |
| frames = [ [] for _ in range(4) ] | |
| for i in tqdm(range(0, render_cameras.shape[1], chunk_size)): | |
| if IS_FLEXICUBES: | |
| frame = model.forward_geometry_separate( | |
| planes, | |
| render_cameras[:, i:i+chunk_size], | |
| render_size=render_size, | |
| levels=torch.tensor([0]).to(device), | |
| )['imgs'] | |
| for j in range(4): | |
| frames[j].append(frame[j]) | |
| else: | |
| frame = model.synthesizer( | |
| planes, | |
| cameras=render_cameras[:, i:i+chunk_size], | |
| render_size=render_size, | |
| )['images_rgb'] | |
| frames.append(frame) | |
| for j in range(4): | |
| frames[j] = torch.cat(frames[j], dim=1) | |
| video_fpath_j = video_fpath.replace('.mp4', f'_{j}.mp4') | |
| images_to_video( | |
| frames[j][0], | |
| video_fpath_j, | |
| fps=30, | |
| ) | |
| _, mesh_glb_fpath = make_mesh(mesh_fpath.replace(mesh_fpath[-4:], f'_{j}{mesh_fpath[-4:]}'), planes, level=[0, 3, 4, 2][j]) | |
| return video_fpath, mesh_fpath, mesh_glb_fpath | |
| if __name__ == '__main__': | |
| import argparse | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument('--input_dir', type=str, default="result/multiview") | |
| parser.add_argument('--output_dir', type=str, default="result/slrm") | |
| args = parser.parse_args() | |
| paths = glob.glob(args.input_dir + '/*') | |
| os.makedirs(args.output_dir, exist_ok=True) | |
| def load_rgb(path): | |
| img = plt.imread(path) | |
| img = Image.fromarray(np.uint8(img * 255.)) | |
| return img | |
| for path in tqdm(paths): | |
| name = path.split('/')[-1] | |
| index_targets = [ | |
| 'level0/color_0.png', | |
| 'level0/color_1.png', | |
| 'level0/color_2.png', | |
| 'level0/color_3.png', | |
| 'level0/color_4.png', | |
| 'level0/color_5.png', | |
| ] | |
| imgs = [] | |
| for index_target in index_targets: | |
| img = load_rgb(os.path.join(path, index_target)) | |
| imgs.append(img) | |
| imgs = np.stack(imgs, axis=0).astype(np.float32) / 255.0 | |
| imgs = torch.from_numpy(np.array(imgs)).permute(0, 3, 1, 2).contiguous().float() # (6, 3, 1024, 1024) | |
| video_fpath, mesh_fpath, mesh_glb_fpath = make3d(imgs, name, args.output_dir) | |