ibrahim yıldız commited on
Commit
8f186d8
·
verified ·
1 Parent(s): ef17e40

Upload 5 files

Browse files
Files changed (5) hide show
  1. Unknown-2.png +0 -0
  2. Unknown.png +0 -0
  3. app.py +118 -0
  4. google_store.jpg +0 -0
  5. lightgbm_model.txt +0 -0
Unknown-2.png ADDED
Unknown.png ADDED
app.py ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import pandas as pd
3
+ import numpy as np
4
+ import lightgbm as lgb
5
+ from datetime import datetime
6
+
7
+ # Load the trained model
8
+ model = lgb.Booster(model_file='lightgbm_model.txt')
9
+
10
+ # Function to convert date to timestamp
11
+ def date_to_timestamp(date):
12
+ return datetime(date.year, date.month, date.day).timestamp()
13
+
14
+ # Function to create the input dataframe
15
+ def create_input_df(date, visitNumber, totals_visits, totals_hits, totals_pageviews, totals_newVisits,
16
+ channelGrouping, device_browser, device_operatingSystem, device_deviceCategory,
17
+ geoNetwork_subContinent, trafficSource_source, trafficSource_medium):
18
+ data = {
19
+ 'date': [date_to_timestamp(date)],
20
+ 'visitNumber': [visitNumber],
21
+ 'totals_visits': [totals_visits],
22
+ 'totals_hits': [totals_hits],
23
+ 'totals_pageviews': [totals_pageviews],
24
+ 'totals_newVisits': [totals_newVisits],
25
+ f'channelGrouping_{channelGrouping}': [1],
26
+ f'device_browser_{device_browser}': [1],
27
+ f'device_operatingSystem_{device_operatingSystem}': [1],
28
+ f'device_deviceCategory_{device_deviceCategory}': [1],
29
+ f'geoNetwork_subContinent_{geoNetwork_subContinent}': [1],
30
+ f'trafficSource_source_{trafficSource_source}': [1],
31
+ f'trafficSource_medium_{trafficSource_medium}': [1],
32
+ }
33
+
34
+ # Create the dataframe
35
+ input_df = pd.DataFrame(data)
36
+
37
+ # Fill missing columns with 0
38
+ expected_columns = [
39
+ 'date', 'visitNumber', 'totals_visits', 'totals_hits', 'totals_pageviews', 'totals_newVisits',
40
+ 'channelGrouping_Direct', 'channelGrouping_Organic Search', 'channelGrouping_Paid Search',
41
+ 'channelGrouping_Referral', 'channelGrouping_Social',
42
+ 'device_browser_Android Webview', 'device_browser_Chrome', 'device_browser_Firefox',
43
+ 'device_browser_Internet Explorer', 'device_browser_Safari',
44
+ 'device_operatingSystem_Android', 'device_operatingSystem_Chrome OS', 'device_operatingSystem_Linux',
45
+ 'device_operatingSystem_Macintosh', 'device_operatingSystem_Windows', 'device_operatingSystem_iOS',
46
+ 'device_deviceCategory_desktop', 'device_deviceCategory_mobile', 'device_deviceCategory_tablet',
47
+ 'geoNetwork_subContinent_Eastern Asia', 'geoNetwork_subContinent_Eastern Europe',
48
+ 'geoNetwork_subContinent_Northern America', 'geoNetwork_subContinent_Northern Europe',
49
+ 'geoNetwork_subContinent_South America', 'geoNetwork_subContinent_Southeast Asia',
50
+ 'geoNetwork_subContinent_Southern Asia', 'geoNetwork_subContinent_Southern Europe',
51
+ 'geoNetwork_subContinent_Western Asia', 'geoNetwork_subContinent_Western Europe',
52
+ 'trafficSource_source_(direct)', 'trafficSource_source_google', 'trafficSource_source_mall.googleplex.com',
53
+ 'trafficSource_source_youtube.com', 'trafficSource_medium_(none)', 'trafficSource_medium_affiliate',
54
+ 'trafficSource_medium_cpc', 'trafficSource_medium_organic', 'trafficSource_medium_referral'
55
+ ]
56
+
57
+ for col in expected_columns:
58
+ if col not in input_df.columns:
59
+ input_df[col] = 0
60
+
61
+ return input_df[expected_columns]
62
+
63
+ # Streamlit app
64
+ st.title('GStore Digital Sales Revenue Prediction 🪝')
65
+ st.image('google_store.jpg')
66
+ st.write('Google shared some digital marketing data for their store. This app calculates whether a customer profile will turn into a sale or not.')
67
+
68
+ st.write('High Page visits and site views, using Chrome OS, using mall.googleplex.com, located in North America are all have increased revenue possibility')
69
+
70
+ # Collect user inputs
71
+ date = st.date_input('Date')
72
+ visitNumber = st.number_input('Visit Number', min_value=1)
73
+ totals_visits = st.number_input('Total Visits', min_value=1)
74
+ totals_hits = st.number_input('Total Hits', min_value=1)
75
+ totals_pageviews = st.number_input('Total Pageviews', min_value=1)
76
+ totals_newVisits = st.number_input('Total New Visits', min_value=0)
77
+
78
+ channelGrouping = st.selectbox('Channel Grouping',
79
+ ['Direct', 'Organic Search', 'Paid Search', 'Referral', 'Social'])
80
+ device_browser = st.selectbox('Device Browser',
81
+ ['Android Webview', 'Chrome', 'Firefox', 'Internet Explorer', 'Safari'])
82
+ device_operatingSystem = st.selectbox('Device Operating System',
83
+ ['Android', 'Chrome OS', 'Linux', 'Macintosh', 'Windows', 'iOS'])
84
+ device_deviceCategory = st.selectbox('Device Category', ['desktop', 'mobile', 'tablet'])
85
+ geoNetwork_subContinent = st.selectbox('GeoNetwork Sub Continent',
86
+ ['Eastern Asia', 'Eastern Europe', 'Northern America', 'Northern Europe',
87
+ 'South America', 'Southeast Asia', 'Southern Asia', 'Southern Europe',
88
+ 'Western Asia', 'Western Europe'])
89
+ trafficSource_source = st.selectbox('Traffic Source', ['(direct)', 'google', 'mall.googleplex.com', 'youtube.com'])
90
+ trafficSource_medium = st.selectbox('Traffic Source Medium', ['(none)', 'affiliate', 'cpc', 'organic', 'referral'])
91
+
92
+ # Create input dataframe
93
+ input_df = create_input_df(date, visitNumber, totals_visits, totals_hits, totals_pageviews, totals_newVisits,
94
+ channelGrouping, device_browser, device_operatingSystem, device_deviceCategory,
95
+ geoNetwork_subContinent, trafficSource_source, trafficSource_medium)
96
+
97
+ # Make prediction
98
+ prediction = model.predict(input_df)
99
+
100
+ # Display the prediction result
101
+ if prediction[0] < 0:
102
+ st.header("The user is not likely to buy.")
103
+ elif prediction[0] < 0.001:
104
+ st.header("The user is not likely to buy.")
105
+ elif prediction[0] < 0.02:
106
+ predicted_value = prediction[0] * 5000
107
+ st.header(f"The user might buy. Predicted Revenue: ${int(predicted_value)}")
108
+ else:
109
+ predicted_value = prediction[0] * 2500
110
+ st.header(f"The user is highly likely to buy. Predicted Revenue: ${int(predicted_value)}")
111
+
112
+ st.write('These are some graphs about the 900K rows of data. 1.3% of site visitors turn into customers')
113
+ st.image('Unknown-1.png')
114
+ st.write('The high spenders are what keeps the wheel going')
115
+ st.image('Unknown.png')
116
+ st.write('The visits and sales are quite corraleted and seasonal.')
117
+ st.image('Unknown-2.png')
118
+
google_store.jpg ADDED
lightgbm_model.txt ADDED
The diff for this file is too large to render. See raw diff