Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -12,23 +12,14 @@ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
|
| 12 |
from nltk.stem import PorterStemmer
|
| 13 |
import gradio as gr
|
| 14 |
|
| 15 |
-
# --- Download necessary NLTK data ---
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
nltk.download('stopwords', quiet=True)
|
| 24 |
-
try:
|
| 25 |
-
nltk.data.find('taggers/averaged_perceptron_tagger')
|
| 26 |
-
except LookupError:
|
| 27 |
-
nltk.download('averaged_perceptron_tagger', quiet=True)
|
| 28 |
-
try:
|
| 29 |
-
nltk.data.find('tokenizers/punkt')
|
| 30 |
-
except LookupError:
|
| 31 |
-
nltk.download('punkt', quiet=True)
|
| 32 |
|
| 33 |
STOPWORDS = set(stopwords.words('english'))
|
| 34 |
stemmer = PorterStemmer()
|
|
@@ -41,7 +32,7 @@ combined_job_embeddings = None
|
|
| 41 |
original_job_title_embeddings = None
|
| 42 |
LLM_PIPELINE = None
|
| 43 |
LLM_MODEL_NAME = "microsoft/phi-2"
|
| 44 |
-
FINETUNED_MODEL_ID = "its-zion-18/projfinetuned"
|
| 45 |
KNOWN_WORDS = set()
|
| 46 |
|
| 47 |
# --- CORE NLP & HELPER FUNCTIONS ---
|
|
@@ -212,37 +203,39 @@ def _course_links_for(skill: str) -> str:
|
|
| 212 |
|
| 213 |
# --- GRADIO INTERFACE FUNCTIONS ---
|
| 214 |
|
| 215 |
-
### --- FIX #1A: The `get_job_matches` function now returns 5 items, including the initial results (`emb_matches`) for the state ---
|
| 216 |
def get_job_matches(dream_job: str, top_n: int, skills_text: str):
|
| 217 |
status = "Searching using hybrid model..."
|
| 218 |
expanded_desc = llm_expand_query(dream_job)
|
| 219 |
-
emb_matches = find_job_matches(dream_job, expanded_desc, top_k=50)
|
| 220 |
user_skills = [_norm_skill_token(s) for s in skills_text.split(',') if _norm_skill_token(s)]
|
| 221 |
-
|
| 222 |
if user_skills:
|
| 223 |
display_df = score_jobs_by_skills(user_skills, emb_matches)
|
| 224 |
-
status = f"Found and **re-ranked** results by your {len(user_skills)} skills."
|
| 225 |
else:
|
| 226 |
display_df = emb_matches
|
| 227 |
-
status = f"Found {len(emb_matches)} top matches using semantic search."
|
| 228 |
|
| 229 |
display_df = display_df.head(top_n)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 230 |
table_to_show = display_df[['job_title', 'company', 'Similarity Score']]
|
| 231 |
if 'Skill Match Score' in display_df.columns:
|
| 232 |
table_to_show['Skill Match Score'] = display_df['Skill Match Score']
|
| 233 |
-
|
| 234 |
dropdown_options = [(f"{i+1}. {row['job_title']} - {row['company']}", row.name) for i, row in display_df.iterrows()]
|
| 235 |
dropdown_value = dropdown_options[0][1] if dropdown_options else None
|
| 236 |
-
|
| 237 |
return status, emb_matches, table_to_show, gr.Dropdown(choices=dropdown_options, value=dropdown_value, visible=True), gr.Accordion(visible=True)
|
| 238 |
|
| 239 |
def rerank_current_results(initial_matches_df, skills_text, top_n):
|
| 240 |
if initial_matches_df is None or pd.DataFrame(initial_matches_df).empty:
|
| 241 |
return "Please find matches first before re-ranking.", pd.DataFrame(), gr.Dropdown(visible=False)
|
| 242 |
-
|
| 243 |
-
# Ensure we are working with a DataFrame
|
| 244 |
initial_matches_df = pd.DataFrame(initial_matches_df)
|
| 245 |
-
|
| 246 |
user_skills = [_norm_skill_token(s) for s in skills_text.split(',') if _norm_skill_token(s)]
|
| 247 |
if not user_skills:
|
| 248 |
status = "Skills cleared. Showing original semantic search results."
|
|
@@ -258,7 +251,6 @@ def rerank_current_results(initial_matches_df, skills_text, top_n):
|
|
| 258 |
dropdown_value = dropdown_options[0][1] if dropdown_options else None
|
| 259 |
return status, table_to_show, gr.Dropdown(choices=dropdown_options, value=dropdown_value, visible=True)
|
| 260 |
|
| 261 |
-
### --- FIX #1B: These wrapper functions now handle the 5 return values correctly ---
|
| 262 |
def find_matches_and_rank_with_check(dream_job: str, top_n: int, skills_text: str):
|
| 263 |
if not dream_job:
|
| 264 |
return "Please describe your dream job first.", None, pd.DataFrame(), gr.Dropdown(visible=False), gr.Accordion(visible=False), gr.Markdown(""), gr.Row(visible=False)
|
|
@@ -267,7 +259,7 @@ def find_matches_and_rank_with_check(dream_job: str, top_n: int, skills_text: st
|
|
| 267 |
word_list_html = ", ".join([f"<b><span style='color: #F87171;'>{w}</span></b>" for w in unrecognized_words])
|
| 268 |
alert_message = f"<b><span style='color: #F87171;'>β οΈ Possible Spelling Error:</span></b> Unrecognized: {word_list_html}."
|
| 269 |
return "Status: Awaiting confirmation.", None, pd.DataFrame(), gr.Dropdown(visible=False), gr.Accordion(visible=False), gr.Markdown(alert_message, visible=True), gr.Row(visible=True)
|
| 270 |
-
|
| 271 |
status, emb_matches, table_to_show, dropdown, details_accordion = get_job_matches(dream_job, top_n, skills_text)
|
| 272 |
return status, emb_matches, table_to_show, dropdown, details_accordion, gr.Markdown(visible=False), gr.Row(visible=False)
|
| 273 |
|
|
@@ -276,55 +268,85 @@ def find_matches_and_rank_anyway(dream_job: str, top_n: int, skills_text: str):
|
|
| 276 |
return status, emb_matches, table_to_show, dropdown, details_accordion, gr.Markdown(visible=False), gr.Row(visible=False)
|
| 277 |
|
| 278 |
def on_select_job(job_id, skills_text):
|
| 279 |
-
if job_id is None:
|
|
|
|
|
|
|
| 280 |
row = original_df.loc[job_id]
|
| 281 |
title, company = str(row.get("job_title", "")), str(row.get("company", ""))
|
| 282 |
job_details_markdown = f"### {title} β {company}"
|
| 283 |
duties, qualifications, description = str(row.get('Duties', '')), str(row.get('qualifications', '')), str(row.get('Description', ''))
|
|
|
|
| 284 |
user_skills = [_norm_skill_token(s) for s in skills_text.split(',') if _norm_skill_token(s)]
|
|
|
|
| 285 |
|
| 286 |
-
if not
|
| 287 |
-
learning_plan_html = "<p><i>
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 294 |
job_details_markdown += f"\n**Your skill match:** {score_val:.1%}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 295 |
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 304 |
|
| 305 |
def on_reset():
|
| 306 |
-
|
| 307 |
-
return ("", 3, "", pd.DataFrame(), None, gr.Dropdown(visible=False), gr.Accordion(visible=False), "", "", "", "", "", gr.Markdown(visible=False), gr.Row(visible=False))
|
| 308 |
|
| 309 |
# --- Run Initialization ---
|
| 310 |
print("Starting application initialization...")
|
| 311 |
initialization_status = initialize_data_and_model()
|
| 312 |
print(initialization_status)
|
| 313 |
|
| 314 |
-
# --- Gradio Interface Definition
|
| 315 |
with gr.Blocks(theme=gr.themes.Soft()) as ui:
|
| 316 |
gr.Markdown("# Hybrid Career Planner & Skill Gap Analyzer")
|
| 317 |
|
| 318 |
-
### --- FIX #1C: A State component is defined to hold the initial results ---
|
| 319 |
initial_matches_state = gr.State()
|
|
|
|
|
|
|
| 320 |
|
| 321 |
with gr.Row():
|
| 322 |
with gr.Column(scale=3):
|
| 323 |
dream_text = gr.Textbox(label='Your Dream Job Description', lines=3, placeholder="e.g., 'A role in a tech startup focused on machine learning...'")
|
| 324 |
with gr.Accordion("Optional: Add Your Skills to Re-rank Results", open=False):
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
with gr.Column(scale=1):
|
| 329 |
topk_slider = gr.Slider(minimum=1, maximum=5, value=3, step=1, label="Number of Matches")
|
| 330 |
search_btn = gr.Button("Find Matches", variant="primary")
|
|
@@ -342,7 +364,6 @@ with gr.Blocks(theme=gr.themes.Soft()) as ui:
|
|
| 342 |
with gr.Accordion("Job Details & Learning Plan", open=False, visible=False) as details_accordion:
|
| 343 |
job_details_markdown = gr.Markdown()
|
| 344 |
|
| 345 |
-
### --- FIX #2: The Tabs are now placed before the Learning Plan ---
|
| 346 |
with gr.Tabs():
|
| 347 |
with gr.TabItem("Duties"):
|
| 348 |
duties_markdown = gr.Markdown()
|
|
@@ -352,10 +373,9 @@ with gr.Blocks(theme=gr.themes.Soft()) as ui:
|
|
| 352 |
description_markdown = gr.Markdown()
|
| 353 |
|
| 354 |
learning_plan_output = gr.HTML(label="Learning Plan")
|
|
|
|
| 355 |
|
| 356 |
# --- Event Handlers ---
|
| 357 |
-
|
| 358 |
-
### --- FIX #1D: The search button outputs now include `initial_matches_state` to fix the re-rank button ---
|
| 359 |
search_btn.click(
|
| 360 |
fn=find_matches_and_rank_with_check,
|
| 361 |
inputs=[dream_text, topk_slider, skills_text],
|
|
@@ -372,7 +392,7 @@ with gr.Blocks(theme=gr.themes.Soft()) as ui:
|
|
| 372 |
)
|
| 373 |
reset_btn.click(
|
| 374 |
fn=on_reset,
|
| 375 |
-
outputs=[dream_text, topk_slider, skills_text, df_output, initial_matches_state, job_selector, details_accordion, status_text, job_details_markdown, duties_markdown, qualifications_markdown, description_markdown, spelling_alert, spelling_row],
|
| 376 |
queue=False
|
| 377 |
)
|
| 378 |
rerank_btn.click(
|
|
@@ -383,7 +403,12 @@ with gr.Blocks(theme=gr.themes.Soft()) as ui:
|
|
| 383 |
job_selector.change(
|
| 384 |
fn=on_select_job,
|
| 385 |
inputs=[job_selector, skills_text],
|
| 386 |
-
outputs=[job_details_markdown, duties_markdown, qualifications_markdown, description_markdown, learning_plan_output, details_accordion]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 387 |
)
|
| 388 |
|
| 389 |
ui.launch()
|
|
|
|
| 12 |
from nltk.stem import PorterStemmer
|
| 13 |
import gradio as gr
|
| 14 |
|
| 15 |
+
# --- CORRECTED: Download necessary NLTK data ---
|
| 16 |
+
# This revised block is more direct and ensures all packages are downloaded.
|
| 17 |
+
for package in ['words', 'stopwords', 'averaged_perceptron_tagger', 'punkt']:
|
| 18 |
+
try:
|
| 19 |
+
nltk.data.find(f'corpora/{package}' if package in ['words', 'stopwords'] else f'taggers/{package}' if package == 'averaged_perceptron_tagger' else f'tokenizers/{package}')
|
| 20 |
+
except LookupError:
|
| 21 |
+
nltk.download(package)
|
| 22 |
+
# ------------------------------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
STOPWORDS = set(stopwords.words('english'))
|
| 25 |
stemmer = PorterStemmer()
|
|
|
|
| 32 |
original_job_title_embeddings = None
|
| 33 |
LLM_PIPELINE = None
|
| 34 |
LLM_MODEL_NAME = "microsoft/phi-2"
|
| 35 |
+
FINETUNED_MODEL_ID = "its-zion-18/projfinetuned"
|
| 36 |
KNOWN_WORDS = set()
|
| 37 |
|
| 38 |
# --- CORE NLP & HELPER FUNCTIONS ---
|
|
|
|
| 203 |
|
| 204 |
# --- GRADIO INTERFACE FUNCTIONS ---
|
| 205 |
|
|
|
|
| 206 |
def get_job_matches(dream_job: str, top_n: int, skills_text: str):
|
| 207 |
status = "Searching using hybrid model..."
|
| 208 |
expanded_desc = llm_expand_query(dream_job)
|
| 209 |
+
emb_matches = find_job_matches(dream_job, expanded_desc, top_k=50)
|
| 210 |
user_skills = [_norm_skill_token(s) for s in skills_text.split(',') if _norm_skill_token(s)]
|
| 211 |
+
|
| 212 |
if user_skills:
|
| 213 |
display_df = score_jobs_by_skills(user_skills, emb_matches)
|
|
|
|
| 214 |
else:
|
| 215 |
display_df = emb_matches
|
|
|
|
| 216 |
|
| 217 |
display_df = display_df.head(top_n)
|
| 218 |
+
|
| 219 |
+
if user_skills:
|
| 220 |
+
status = f"Found and **re-ranked** results by your {len(user_skills)} skills. Displaying top {len(display_df)}."
|
| 221 |
+
else:
|
| 222 |
+
status = f"Found {len(display_df)} top matches using semantic search."
|
| 223 |
+
|
| 224 |
table_to_show = display_df[['job_title', 'company', 'Similarity Score']]
|
| 225 |
if 'Skill Match Score' in display_df.columns:
|
| 226 |
table_to_show['Skill Match Score'] = display_df['Skill Match Score']
|
| 227 |
+
|
| 228 |
dropdown_options = [(f"{i+1}. {row['job_title']} - {row['company']}", row.name) for i, row in display_df.iterrows()]
|
| 229 |
dropdown_value = dropdown_options[0][1] if dropdown_options else None
|
| 230 |
+
|
| 231 |
return status, emb_matches, table_to_show, gr.Dropdown(choices=dropdown_options, value=dropdown_value, visible=True), gr.Accordion(visible=True)
|
| 232 |
|
| 233 |
def rerank_current_results(initial_matches_df, skills_text, top_n):
|
| 234 |
if initial_matches_df is None or pd.DataFrame(initial_matches_df).empty:
|
| 235 |
return "Please find matches first before re-ranking.", pd.DataFrame(), gr.Dropdown(visible=False)
|
| 236 |
+
|
|
|
|
| 237 |
initial_matches_df = pd.DataFrame(initial_matches_df)
|
| 238 |
+
|
| 239 |
user_skills = [_norm_skill_token(s) for s in skills_text.split(',') if _norm_skill_token(s)]
|
| 240 |
if not user_skills:
|
| 241 |
status = "Skills cleared. Showing original semantic search results."
|
|
|
|
| 251 |
dropdown_value = dropdown_options[0][1] if dropdown_options else None
|
| 252 |
return status, table_to_show, gr.Dropdown(choices=dropdown_options, value=dropdown_value, visible=True)
|
| 253 |
|
|
|
|
| 254 |
def find_matches_and_rank_with_check(dream_job: str, top_n: int, skills_text: str):
|
| 255 |
if not dream_job:
|
| 256 |
return "Please describe your dream job first.", None, pd.DataFrame(), gr.Dropdown(visible=False), gr.Accordion(visible=False), gr.Markdown(""), gr.Row(visible=False)
|
|
|
|
| 259 |
word_list_html = ", ".join([f"<b><span style='color: #F87171;'>{w}</span></b>" for w in unrecognized_words])
|
| 260 |
alert_message = f"<b><span style='color: #F87171;'>β οΈ Possible Spelling Error:</span></b> Unrecognized: {word_list_html}."
|
| 261 |
return "Status: Awaiting confirmation.", None, pd.DataFrame(), gr.Dropdown(visible=False), gr.Accordion(visible=False), gr.Markdown(alert_message, visible=True), gr.Row(visible=True)
|
| 262 |
+
|
| 263 |
status, emb_matches, table_to_show, dropdown, details_accordion = get_job_matches(dream_job, top_n, skills_text)
|
| 264 |
return status, emb_matches, table_to_show, dropdown, details_accordion, gr.Markdown(visible=False), gr.Row(visible=False)
|
| 265 |
|
|
|
|
| 268 |
return status, emb_matches, table_to_show, dropdown, details_accordion, gr.Markdown(visible=False), gr.Row(visible=False)
|
| 269 |
|
| 270 |
def on_select_job(job_id, skills_text):
|
| 271 |
+
if job_id is None:
|
| 272 |
+
return "", "", "", "", "", gr.Accordion(visible=False), [], 0, gr.Button(visible=False)
|
| 273 |
+
|
| 274 |
row = original_df.loc[job_id]
|
| 275 |
title, company = str(row.get("job_title", "")), str(row.get("company", ""))
|
| 276 |
job_details_markdown = f"### {title} β {company}"
|
| 277 |
duties, qualifications, description = str(row.get('Duties', '')), str(row.get('qualifications', '')), str(row.get('Description', ''))
|
| 278 |
+
|
| 279 |
user_skills = [_norm_skill_token(s) for s in skills_text.split(',') if _norm_skill_token(s)]
|
| 280 |
+
job_skills = row.get("Skills", [])
|
| 281 |
|
| 282 |
+
if not job_skills:
|
| 283 |
+
learning_plan_html = "<p><i>No specific skills were extracted for this job.</i></p>"
|
| 284 |
+
return job_details_markdown, duties, qualifications, description, learning_plan_html, gr.Accordion(visible=True), [], 0, gr.Button(visible=False)
|
| 285 |
+
|
| 286 |
+
all_missing_skills = sorted([s for s in job_skills if not any(_skill_match(ut, s) for ut in user_skills)], key=lambda x: x.lower())
|
| 287 |
+
|
| 288 |
+
if not all_missing_skills:
|
| 289 |
+
learning_plan_html = "<h4 style='color:green;'>π You have all the required skills!</h4>"
|
| 290 |
+
return job_details_markdown, duties, qualifications, description, learning_plan_html, gr.Accordion(visible=True), [], 0, gr.Button(visible=False)
|
| 291 |
+
|
| 292 |
+
if user_skills:
|
| 293 |
+
score_val = (len(job_skills) - len(all_missing_skills)) / len(job_skills)
|
| 294 |
job_details_markdown += f"\n**Your skill match:** {score_val:.1%}"
|
| 295 |
+
headline = "<b>Great fit!</b>" if score_val >= 0.8 else "<b>Good progress!</b>" if score_val >= 0.5 else "<b>Solid starting point.</b>"
|
| 296 |
+
learning_plan_html = f"<h4>{headline} Focus on these skills to improve your match:</h4>"
|
| 297 |
+
skills_to_display = all_missing_skills[:5]
|
| 298 |
+
items_html = [f"<li><b>{ms}</b><br>β’ Learn: {_course_links_for(ms)}</li>" for ms in skills_to_display]
|
| 299 |
+
learning_plan_html += f"<ul style='list-style-type: none; padding-left: 0;'>{''.join(items_html)}</ul>"
|
| 300 |
|
| 301 |
+
return job_details_markdown, duties, qualifications, description, learning_plan_html, gr.Accordion(visible=True), [], 0, gr.Button(visible=False)
|
| 302 |
+
|
| 303 |
+
else:
|
| 304 |
+
headline = "<h4>To be a good fit for this role, you'll need to learn these skills:</h4>"
|
| 305 |
+
skills_to_display = all_missing_skills[:5]
|
| 306 |
+
items_html = [f"<li><b>{ms}</b><br>β’ Learn: {_course_links_for(ms)}</li>" for ms in skills_to_display]
|
| 307 |
+
learning_plan_html = f"{headline}<ul style='list-style-type: none; padding-left: 0;'>{''.join(items_html)}</ul>"
|
| 308 |
+
|
| 309 |
+
full_skill_list_for_state = all_missing_skills
|
| 310 |
+
new_offset = len(skills_to_display)
|
| 311 |
+
should_button_be_visible = len(all_missing_skills) > 5
|
| 312 |
+
|
| 313 |
+
return job_details_markdown, duties, qualifications, description, learning_plan_html, gr.Accordion(visible=True), full_skill_list_for_state, new_offset, gr.Button(visible=should_button_be_visible)
|
| 314 |
+
|
| 315 |
+
def load_more_skills(full_skills_list, current_offset):
|
| 316 |
+
SKILLS_INCREMENT = 5
|
| 317 |
+
new_offset = current_offset + SKILLS_INCREMENT
|
| 318 |
+
skills_to_display = full_skills_list[:new_offset]
|
| 319 |
+
|
| 320 |
+
items_html = [f"<li><b>{ms}</b><br>β’ Learn: {_course_links_for(ms)}</li>" for ms in skills_to_display]
|
| 321 |
+
learning_plan_html = f"<h4>To be a good fit for this role, you'll need to learn these skills:</h4><ul style='list-style-type: none; padding-left: 0;'>{''.join(items_html)}</ul>"
|
| 322 |
+
|
| 323 |
+
should_button_be_visible = new_offset < len(full_skills_list)
|
| 324 |
+
|
| 325 |
+
return learning_plan_html, new_offset, gr.Button(visible=should_button_be_visible)
|
| 326 |
|
| 327 |
def on_reset():
|
| 328 |
+
return ("", 3, "", pd.DataFrame(), None, gr.Dropdown(visible=False), gr.Accordion(visible=False), "Status: Ready.", "", "", "", "", gr.Markdown(visible=False), gr.Row(visible=False), [], 0, gr.Button(visible=False))
|
|
|
|
| 329 |
|
| 330 |
# --- Run Initialization ---
|
| 331 |
print("Starting application initialization...")
|
| 332 |
initialization_status = initialize_data_and_model()
|
| 333 |
print(initialization_status)
|
| 334 |
|
| 335 |
+
# --- Gradio Interface Definition ---
|
| 336 |
with gr.Blocks(theme=gr.themes.Soft()) as ui:
|
| 337 |
gr.Markdown("# Hybrid Career Planner & Skill Gap Analyzer")
|
| 338 |
|
|
|
|
| 339 |
initial_matches_state = gr.State()
|
| 340 |
+
missing_skills_state = gr.State([])
|
| 341 |
+
skills_offset_state = gr.State(0)
|
| 342 |
|
| 343 |
with gr.Row():
|
| 344 |
with gr.Column(scale=3):
|
| 345 |
dream_text = gr.Textbox(label='Your Dream Job Description', lines=3, placeholder="e.g., 'A role in a tech startup focused on machine learning...'")
|
| 346 |
with gr.Accordion("Optional: Add Your Skills to Re-rank Results", open=False):
|
| 347 |
+
with gr.Row():
|
| 348 |
+
skills_text = gr.Textbox(label='Your Skills (comma-separated)', placeholder="e.g., Python, data analysis", scale=3)
|
| 349 |
+
rerank_btn = gr.Button("Re-rank", variant="secondary", scale=1)
|
| 350 |
with gr.Column(scale=1):
|
| 351 |
topk_slider = gr.Slider(minimum=1, maximum=5, value=3, step=1, label="Number of Matches")
|
| 352 |
search_btn = gr.Button("Find Matches", variant="primary")
|
|
|
|
| 364 |
with gr.Accordion("Job Details & Learning Plan", open=False, visible=False) as details_accordion:
|
| 365 |
job_details_markdown = gr.Markdown()
|
| 366 |
|
|
|
|
| 367 |
with gr.Tabs():
|
| 368 |
with gr.TabItem("Duties"):
|
| 369 |
duties_markdown = gr.Markdown()
|
|
|
|
| 373 |
description_markdown = gr.Markdown()
|
| 374 |
|
| 375 |
learning_plan_output = gr.HTML(label="Learning Plan")
|
| 376 |
+
load_more_btn = gr.Button("Load More Skills", visible=False)
|
| 377 |
|
| 378 |
# --- Event Handlers ---
|
|
|
|
|
|
|
| 379 |
search_btn.click(
|
| 380 |
fn=find_matches_and_rank_with_check,
|
| 381 |
inputs=[dream_text, topk_slider, skills_text],
|
|
|
|
| 392 |
)
|
| 393 |
reset_btn.click(
|
| 394 |
fn=on_reset,
|
| 395 |
+
outputs=[dream_text, topk_slider, skills_text, df_output, initial_matches_state, job_selector, details_accordion, status_text, job_details_markdown, duties_markdown, qualifications_markdown, description_markdown, spelling_alert, spelling_row, missing_skills_state, skills_offset_state, load_more_btn],
|
| 396 |
queue=False
|
| 397 |
)
|
| 398 |
rerank_btn.click(
|
|
|
|
| 403 |
job_selector.change(
|
| 404 |
fn=on_select_job,
|
| 405 |
inputs=[job_selector, skills_text],
|
| 406 |
+
outputs=[job_details_markdown, duties_markdown, qualifications_markdown, description_markdown, learning_plan_output, details_accordion, missing_skills_state, skills_offset_state, load_more_btn]
|
| 407 |
+
)
|
| 408 |
+
load_more_btn.click(
|
| 409 |
+
fn=load_more_skills,
|
| 410 |
+
inputs=[missing_skills_state, skills_offset_state],
|
| 411 |
+
outputs=[learning_plan_output, skills_offset_state, load_more_btn]
|
| 412 |
)
|
| 413 |
|
| 414 |
ui.launch()
|