import pandas as pd import datasets from sentence_transformers import SentenceTransformer, util import torch import re import nltk from nltk.corpus import words, stopwords import urllib.parse as _url from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline from nltk.stem import PorterStemmer import gradio as gr import os from tqdm import tqdm tqdm.pandas() # --- NLTK Data Download --- for package in ['words', 'stopwords', 'averaged_perceptron_tagger', 'punkt']: try: nltk.data.find(f'corpora/{package}' if package in ['words', 'stopwords'] else f'taggers/{package}' if package == 'averaged_perceptron_tagger' else f'tokenizers/{package}') except LookupError: nltk.download(package) STOPWORDS = set(stopwords.words('english')) stemmer = PorterStemmer() # --- Expanded Skill Whitelist --- SKILL_WHITELIST = { # Technical & Data 'python', 'java', 'c++', 'javascript', 'typescript', 'sql', 'nosql', 'html', 'css', 'react', 'angular', 'vue', 'nodejs', 'django', 'flask', 'fastapi', 'spring boot', 'ruby on rails', 'php', 'swift', 'kotlin', 'dart', 'flutter', 'machine learning', 'deep learning', 'tensorflow', 'pytorch', 'keras', 'scikit-learn', 'pandas', 'numpy', 'matplotlib', 'natural language processing', 'nlp', 'computer vision', 'data analysis', 'data science', 'data engineering', 'big data', 'spark', 'hadoop', 'kafka', 'data visualization', 'tableau', 'power bi', 'd3.js', 'statistics', 'analytics', 'aws', 'azure', 'google cloud', 'gcp', 'docker', 'kubernetes', 'terraform', 'ansible', 'ci/cd', 'jenkins', 'git', 'github', 'devops', 'linux', 'unix', 'shell scripting', 'powershell', 'cybersecurity', 'penetration testing', 'network security', 'cryptography', 'blockchain', 'c#', '.net', 'sql server', 'mysql', 'postgresql', 'mongodb', 'redis', 'elasticsearch', 'api design', 'rest apis', 'graphql', 'microservices', 'serverless', 'system design', 'saas', # Business & Consulting 'agile', 'scrum', 'project management', 'product management', 'consulting', 'client management', 'business development', 'strategy', 'stakeholder management', 'risk management', 'compliance', 'aml', 'kyc', 'reinsurance', 'finance', 'financial modeling', 'financial analysis', 'due diligence', 'sourcing', 'procurement', 'negotiation', 'supply chain', 'business analysis', 'business intelligence', 'presentations', 'public speaking', 'time management', 'critical thinking', 'design thinking', 'innovation', 'adaptability', 'supervisory', 'pmp', 'cpsm', 'cips', 'microsoft office', 'communication', 'organizational skills', # Soft & Other 'leadership', 'stakeholder communication', 'client communication', 'teamwork', 'collaboration', 'problem solving', 'ui/ux design', 'figma', 'sketch', 'adobe xd', 'graphic design', 'autocad', 'solidworks', 'sales', 'marketing', 'seo', 'sem', 'content writing', 'customer support', 'technical writing', 'sap', 'oracle', 'budgeting', 'mentoring', 'supervising' } # --- GLOBAL STATE & DATA --- original_df = None combined_df = None model = None combined_job_embeddings = None original_job_title_embeddings = None LLM_PIPELINE = None LLM_MODEL_NAME = "microsoft/phi-2" FINETUNED_MODEL_ID = "its-zion-18/projfinetuned" KNOWN_WORDS = set() # --- CORE NLP & HELPER FUNCTIONS --- def _norm_skill_token(s: str) -> str: s = s.lower().strip() s = re.sub(r'[\(\)\[\]\{\}\*]', '', s) s = re.sub(r'^\W+|\W+$', '', s) s = re.sub(r'\s+', ' ', s) return s def build_known_vocabulary(df: pd.DataFrame): global KNOWN_WORDS english_words = set(w.lower() for w in words.words()) job_words = set(re.findall(r'\b\w+\b', " ".join(df['full_text'].astype(str).tolist()).lower())) job_words = {w for w in job_words if w.isalpha() and len(w) > 2} KNOWN_WORDS = english_words | job_words return "Known vocabulary built." def check_spelling_in_query(query: str) -> list[str]: words_in_query = query.lower().split() unrecognized_words = [] if not KNOWN_WORDS: return [] for word in words_in_query: if word.isalpha() and len(word) > 1 and word not in KNOWN_WORDS: unrecognized_words.append(word) return list(set(unrecognized_words)) def initialize_llm_client(): global LLM_PIPELINE try: tokenizer = AutoTokenizer.from_pretrained(LLM_MODEL_NAME, trust_remote_code=True) model_llm = AutoModelForCausalLM.from_pretrained( LLM_MODEL_NAME, torch_dtype="auto", device_map="auto", trust_remote_code=True ) LLM_PIPELINE = pipeline("text-generation", model=model_llm, tokenizer=tokenizer) return True except Exception as e: print(f"🚨 ERROR initializing local LLM: {e}") return False def llm_expand_query(user_input: str) -> str: global LLM_PIPELINE if not LLM_PIPELINE: return user_input prompt_template = ( f"User's career interest: '{user_input}'\n" f"Instruction: Based on the user's interest, write a concise, single-sentence summary (40-60 words) that elaborates on the core intent, typical skills, and responsibilities. " f"Do not include a preamble, the user input, or any list formatting in the output. Just the expanded sentence.\n" f"Expanded Intent:" ) try: response = LLM_PIPELINE(prompt_template, max_new_tokens=100, do_sample=True, temperature=0.6) expanded_query = response[0]['generated_text'].strip().split("Expanded Intent:")[-1].strip() final_query = user_input + ". " + expanded_query.replace('\n', ' ').replace(':', '').strip() final_query = final_query.replace('..', '.').strip() return final_query except Exception: return user_input def find_job_matches(original_user_query: str, expanded_user_query: str, top_k: int = 50) -> pd.DataFrame: expanded_user_embedding = model.encode(expanded_user_query, convert_to_tensor=True) general_similarity_scores = util.cos_sim(expanded_user_embedding, combined_job_embeddings)[0] top_indices = torch.topk(general_similarity_scores, k=len(combined_df)) sorted_combined_df = combined_df.iloc[top_indices.indices.cpu()].copy() sorted_combined_df['general_score'] = top_indices.values.cpu().numpy() unique_matches = sorted_combined_df.drop_duplicates(subset=['job_id'], keep='first').set_index('job_id') original_user_embedding = model.encode(original_user_query, convert_to_tensor=True) title_boost_scores = util.cos_sim(original_user_embedding, original_job_title_embeddings)[0].cpu().numpy() title_boost_map = pd.Series(title_boost_scores, index=original_df['job_id']) unique_matches['title_boost_score'] = unique_matches.index.map(title_boost_map).fillna(0) unique_matches['Similarity Score'] = (0.70 * unique_matches['general_score'] + 0.30 * unique_matches['title_boost_score']) final_job_ids = unique_matches.sort_values(by='Similarity Score', ascending=False).head(top_k).index.tolist() final_results_df = original_df[original_df['job_id'].isin(final_job_ids)].copy() scores_df = unique_matches.reset_index()[['job_id', 'Similarity Score']].copy() final_results_df = pd.merge(final_results_df, scores_df, on='job_id', how='left') final_results_df = final_results_df.sort_values(by='Similarity Score', ascending=False).reset_index(drop=True) final_results_df = final_results_df.set_index('job_id', drop=False).rename(columns={'job_id': 'Job ID'}) return final_results_df def score_jobs_by_skills(user_skills: list[str], df_to_rank: pd.DataFrame) -> pd.DataFrame: if df_to_rank is None or df_to_rank.empty or not user_skills: return df_to_rank.sort_values(by='Similarity Score', ascending=False) if df_to_rank is not None else pd.DataFrame() ranked_df = df_to_rank.copy() if 'Skills' not in ranked_df.columns: return ranked_df.sort_values(by='Similarity Score', ascending=False) user_skill_embeddings = model.encode(user_skills, convert_to_tensor=True) all_job_skills = sorted(list(set(skill for skills_list in ranked_df['Skills'] if skills_list for skill in skills_list))) if not all_job_skills: ranked_df['Skill Match Score'] = 0.0 ranked_df['Final Score'] = ranked_df['Similarity Score'] return ranked_df job_skill_embeddings = model.encode(all_job_skills, convert_to_tensor=True) similarity_matrix = util.cos_sim(user_skill_embeddings, job_skill_embeddings) def calculate_confidence_adjusted_score(row): job_skills_list = row.get('Skills', []) if not job_skills_list: return 0.0 total_required = len(job_skills_list) sum_of_max_similarities = 0.0 for job_skill in job_skills_list: try: job_skill_idx = all_job_skills.index(job_skill) max_sim = torch.max(similarity_matrix[:, job_skill_idx]) sum_of_max_similarities += max_sim.item() except (ValueError, IndexError): continue avg_score = sum_of_max_similarities / total_required if total_required > 0 else 0.0 skill_count_factor = min(1.0, total_required / 5.0) return avg_score * skill_count_factor ranked_df['Skill Match Score'] = ranked_df.apply(calculate_confidence_adjusted_score, axis=1) ranked_df['Final Score'] = (0.8 * ranked_df['Similarity Score']) + (0.2 * ranked_df['Skill Match Score']) ranked_df = ranked_df.sort_values(by='Final Score', ascending=False).reset_index(drop=True) return ranked_df.set_index('Job ID', drop=False).rename_axis(None) def initialize_data_and_model(): global original_df, combined_df, model, combined_job_embeddings, original_job_title_embeddings PROCESSED_DATA_PATH = "processed_jobs_with_skills.parquet" print("--- Initializing LLM Client ---") if not initialize_llm_client(): print("Warning: LLM Client failed to initialize. Will use NLTK only for skills.") if os.path.exists(PROCESSED_DATA_PATH): print(f"--- Loading pre-processed data from {PROCESSED_DATA_PATH} ---") original_df = pd.read_parquet(PROCESSED_DATA_PATH) else: print("--- No pre-processed data found. Starting one-time processing... ---") ds = datasets.load_dataset("its-zion-18/Jobs-tabular-dataset") original_df = ds["original"].to_pandas() def extract_skills_llm(text: str) -> list[str]: if not isinstance(text, str) or len(text.strip()) < 20 or not LLM_PIPELINE: return [] prompt = f""" Instruct: You are an expert technical recruiter. Extract the key skills from the job description text. List technical and soft skills as a comma-separated string. [Example 1] Text: "Requires 3+ years of experience in cloud infrastructure. Must be proficient in AWS, particularly EC2 and S3. Experience with Terraform for IaC is a plus." Extracted Skills: cloud infrastructure, aws, ec2, s3, terraform, infrastructure as code [Example 2] Text: "Seeking a team lead with strong project management abilities. Must communicate effectively with stakeholders and manage timelines using Agile methodologies like Scrum." Extracted Skills: project management, leadership, stakeholder communication, agile, scrum [Actual Task] Text: "{text}" Extracted Skills: """ try: response = LLM_PIPELINE(prompt, max_new_tokens=150, do_sample=False, temperature=0.1) generated_text = response[0]['generated_text'] skills_part = generated_text.split("Extracted Skills:")[-1].strip() skills = [skill.strip() for skill in skills_part.split(',') if skill.strip()] return list(dict.fromkeys(s.lower() for s in skills)) except Exception: return [] def extract_skills_nltk(text: str) -> list[str]: if not isinstance(text, str): return [] text_lower = text.lower() grammar = "NP: {*+}" chunk_parser = nltk.RegexpParser(grammar) tokens = nltk.word_tokenize(text_lower) tagged_tokens = nltk.pos_tag(tokens) chunked_text = chunk_parser.parse(tagged_tokens) potential_skills = set() for subtree in chunked_text.subtrees(): if subtree.label() == 'NP': phrase = " ".join(word for word, tag in subtree.leaves()) if _norm_skill_token(phrase) in SKILL_WHITELIST: potential_skills.add(_norm_skill_token(phrase)) return sorted(list(potential_skills)) def extract_skills_direct_scan(text: str) -> list[str]: if not isinstance(text, str): return [] found_skills = set() for skill in SKILL_WHITELIST: if re.search(r'\b' + re.escape(skill) + r'\b', text, re.IGNORECASE): found_skills.add(skill) return list(found_skills) def expand_skills_with_llm(job_title: str, existing_skills: list) -> list: if not LLM_PIPELINE or not job_title: return [] skills_to_add = 6 - len(existing_skills) prompt = f""" Instruct: A job has the title "{job_title}" and requires the skills: {', '.join(existing_skills)}. Based on this, what are {skills_to_add} additional, closely related skills typically required for such a role? List only the new skills, separated by commas. Do not repeat skills from the original list. Additional Skills: """ try: response = LLM_PIPELINE(prompt, max_new_tokens=50, do_sample=True, temperature=0.5) generated_text = response[0]['generated_text'] skills_part = generated_text.split("Additional Skills:")[-1].strip() new_skills = [skill.strip().lower() for skill in skills_part.split(',') if skill.strip()] return new_skills except Exception: return [] def extract_skills_hybrid(row) -> list[str]: text = row['text_for_skills'] job_title = row.get('Job title', '') # Use original Job title for context llm_skills = extract_skills_llm(text) nltk_skills = extract_skills_nltk(text) direct_skills = extract_skills_direct_scan(text) combined_skills = set(llm_skills) | set(nltk_skills) | set(direct_skills) # If the combined list is still too short, expand it if len(combined_skills) < 6: expanded_skills = expand_skills_with_llm(job_title, list(combined_skills)) combined_skills.update(expanded_skills) return sorted(list(combined_skills)) def create_text_for_skills(row): return " ".join([str(s) for s in [row.get("Job title"), row.get("Duties"), row.get("qualifications"), row.get("Description")] if pd.notna(s)]) original_df["text_for_skills"] = original_df.apply(create_text_for_skills, axis=1) print("--- Extracting skills with HYBRID ACCURACY model. Please wait... ---") # Apply the hybrid function row-wise to include job title context original_df['Skills'] = original_df.progress_apply(extract_skills_hybrid, axis=1) original_df = original_df.drop(columns=['text_for_skills']) print(f"--- Saving processed data to {PROCESSED_DATA_PATH} for faster future startups ---") original_df.to_parquet(PROCESSED_DATA_PATH) original_df['job_id'] = original_df.index def create_full_text(row): return " ".join([str(s) for s in [row.get("Job title"), row.get("Company"), row.get("Duties"), row.get("qualifications"), row.get("Description")]]) original_df["full_text"] = original_df.apply(create_full_text, axis=1) ds = datasets.load_dataset("its-zion-18/Jobs-tabular-dataset") augmented_df = ds["augmented"].to_pandas() max_id = len(original_df) - 1 augmented_df['job_id'] = augmented_df.index.map(lambda i: min(i // 20, max_id)) augmented_df["full_text"] = augmented_df.apply(create_full_text, axis=1) combined_df = pd.concat([original_df.copy(), augmented_df.copy()], ignore_index=True) original_df = original_df.rename(columns={'Job title': 'job_title', 'Company': 'company'}) print("--- Loading Fine-Tuned Sentence Transformer Model ---") model = SentenceTransformer(FINETUNED_MODEL_ID) print("--- Encoding Embeddings ---") combined_job_embeddings = model.encode(combined_df["full_text"].tolist(), convert_to_tensor=True, show_progress_bar=True) original_job_title_embeddings = model.encode(original_df["job_title"].tolist(), convert_to_tensor=True, show_progress_bar=True) print("--- Building Vocabulary ---") build_known_vocabulary(combined_df) return "--- Initialization Complete ---" def _course_links_for(skill: str) -> str: q = _url.quote(skill) links = [("Coursera", f"https://www.coursera.org/search?query={q}"), ("edX", f"https://www.edx.org/search?q={q}"), ("Udemy", f"https://www.udemy.com/courses/search/?q={q}"), ("YouTube", f"https://www.youtube.com/results?search_query={q}+tutorial")] return " • ".join([f'{name}' for name, u in links]) def get_job_matches(dream_job: str, top_n: int, skills_text: str): status = "Searching using hybrid model..." expanded_desc = llm_expand_query(dream_job) emb_matches = find_job_matches(dream_job, expanded_desc, top_k=50) user_skills = [_norm_skill_token(s) for s in skills_text.split(',') if _norm_skill_token(s)] # --- NEW: Initialize variables for the recommendations section --- recommendations_table = pd.DataFrame() recommendations_visible = False if user_skills: scored_df = score_jobs_by_skills(user_skills, emb_matches) # --- NEW: Logic to get top 5 jobs based purely on skill match score --- skill_sorted_df = scored_df.sort_values(by='Skill Match Score', ascending=False).head(5) if not skill_sorted_df.empty: recs = skill_sorted_df[['job_title', 'company', 'Skill Match Score', 'Final Score']].copy() recs = recs.rename(columns={'Final Score': 'Overall Score'}) recs['Skill Match Score'] = recs['Skill Match Score'].map('{:.2%}'.format) recs['Overall Score'] = recs['Overall Score'].map('{:.2%}'.format) recommendations_table = recs recommendations_visible = True # --- END NEW --- display_df = scored_df.head(top_n) status = f"Found and **re-ranked** results by your {len(user_skills)} skills. Displaying top {len(display_df)}." else: display_df = emb_matches.head(top_n) status = f"Found {len(display_df)} top matches using semantic search." if 'Final Score' in display_df.columns: table_to_show = display_df[['job_title', 'company', 'Final Score', 'Skill Match Score']] table_to_show = table_to_show.rename(columns={'Final Score': 'Overall Score'}) table_to_show['Skill Match Score'] = table_to_show['Skill Match Score'].map('{:.2%}'.format) table_to_show['Overall Score'] = table_to_show['Overall Score'].map('{:.2%}'.format) else: table_to_show = display_df[['job_title', 'company', 'Similarity Score']] table_to_show = table_to_show.rename(columns={'Similarity Score': 'Overall Score'}) table_to_show['Overall Score'] = table_to_show['Overall Score'].map('{:.2%}'.format) dropdown_options = [(f"{i+1}. {row['job_title']} - {row['company']}", row.name) for i, row in display_df.iterrows()] dropdown_value = dropdown_options[0][1] if dropdown_options else None # --- MODIFIED: Added new outputs for recommendations --- return status, emb_matches, table_to_show, gr.Dropdown(choices=dropdown_options, value=dropdown_value, visible=True), gr.Accordion(visible=True), recommendations_table, gr.Accordion(visible=recommendations_visible) def rerank_current_results(initial_matches_df, skills_text, top_n): if initial_matches_df is None or pd.DataFrame(initial_matches_df).empty: return "Please find matches first before re-ranking.", pd.DataFrame(), gr.Dropdown(visible=False), pd.DataFrame(), gr.Accordion(visible=False) initial_matches_df = pd.DataFrame(initial_matches_df) user_skills = [_norm_skill_token(s) for s in skills_text.split(',') if _norm_skill_token(s)] # --- NEW: Initialize variables for the recommendations section --- recommendations_table = pd.DataFrame() recommendations_visible = False if not user_skills: status = "Skills cleared. Showing original semantic search results." display_df = initial_matches_df.head(top_n) table_to_show = display_df[['job_title', 'company', 'Similarity Score']] table_to_show = table_to_show.rename(columns={'Similarity Score': 'Overall Score'}) table_to_show['Overall Score'] = table_to_show['Overall Score'].map('{:.2%}'.format) else: ranked_df = score_jobs_by_skills(user_skills, initial_matches_df) status = f"Results **re-ranked** based on your {len(user_skills)} skills." display_df = ranked_df.head(top_n) # --- NEW: Logic to get top 5 jobs based purely on skill match score --- skill_sorted_df = ranked_df.sort_values(by='Skill Match Score', ascending=False).head(5) if not skill_sorted_df.empty: recs = skill_sorted_df[['job_title', 'company', 'Skill Match Score', 'Final Score']].copy() recs = recs.rename(columns={'Final Score': 'Overall Score'}) recs['Skill Match Score'] = recs['Skill Match Score'].map('{:.2%}'.format) recs['Overall Score'] = recs['Overall Score'].map('{:.2%}'.format) recommendations_table = recs recommendations_visible = True # --- END NEW --- table_to_show = display_df[['job_title', 'company', 'Final Score', 'Skill Match Score']] table_to_show = table_to_show.rename(columns={'Final Score': 'Overall Score'}) table_to_show['Skill Match Score'] = table_to_show['Skill Match Score'].map('{:.2%}'.format) table_to_show['Overall Score'] = table_to_show['Overall Score'].map('{:.2%}'.format) dropdown_options = [(f"{i+1}. {row['job_title']} - {row['company']}", row.name) for i, row in display_df.iterrows()] dropdown_value = dropdown_options[0][1] if dropdown_options else None # --- MODIFIED: Added new outputs for recommendations --- return status, table_to_show, gr.Dropdown(choices=dropdown_options, value=dropdown_value, visible=True), recommendations_table, gr.Accordion(visible=recommendations_visible) def find_matches_and_rank_with_check(dream_job: str, top_n: int, skills_text: str): if not dream_job: # --- MODIFIED: Added new default outputs --- return "Please describe your dream job first.", None, pd.DataFrame(), gr.Dropdown(visible=False), gr.Accordion(visible=False), gr.Markdown(""), gr.Row(visible=False), pd.DataFrame(), gr.Accordion(visible=False) unrecognized_words = check_spelling_in_query(dream_job) if unrecognized_words: word_list_html = ", ".join([f"{w}" for w in unrecognized_words]) alert_message = f"⚠️ Possible Spelling Error: Unrecognized: {word_list_html}." # --- MODIFIED: Added new default outputs --- return "Status: Awaiting confirmation.", None, pd.DataFrame(), gr.Dropdown(visible=False), gr.Accordion(visible=False), gr.Markdown(alert_message, visible=True), gr.Row(visible=True), pd.DataFrame(), gr.Accordion(visible=False) status, emb_matches, table_to_show, dropdown, details_accordion, recommendations_table, recommendations_accordion = get_job_matches(dream_job, top_n, skills_text) return status, emb_matches, table_to_show, dropdown, details_accordion, gr.Markdown(visible=False), gr.Row(visible=False), recommendations_table, recommendations_accordion def find_matches_and_rank_anyway(dream_job: str, top_n: int, skills_text: str): status, emb_matches, table_to_show, dropdown, details_accordion, recommendations_table, recommendations_accordion = get_job_matches(dream_job, top_n, skills_text) return status, emb_matches, table_to_show, dropdown, details_accordion, gr.Markdown(visible=False), gr.Row(visible=False), recommendations_table, recommendations_accordion def on_select_job(job_id, skills_text): if job_id is None: return "", "", "", "", "", gr.Accordion(visible=False), [], 0, gr.Button(visible=False) row = original_df.loc[job_id] title, company = str(row.get("job_title", "")), str(row.get("company", "")) job_details_markdown = f"### {title} — {company}" duties, qualifications, description = str(row.get('Duties', '')), str(row.get('qualifications', '')), str(row.get('Description', '')) user_skills = [_norm_skill_token(s) for s in skills_text.split(',') if _norm_skill_token(s)] job_skills = row.get("Skills", []) if not job_skills: learning_plan_html = "

No specific skills could be extracted for this job.

" return job_details_markdown, duties, qualifications, description, learning_plan_html, gr.Accordion(visible=True), [], 0, gr.Button(visible=False) score_val = 0 all_missing_skills = job_skills if user_skills: user_skill_embeddings = model.encode(user_skills, convert_to_tensor=True) job_skill_embeddings = model.encode(job_skills, convert_to_tensor=True) similarity_matrix = util.cos_sim(user_skill_embeddings, job_skill_embeddings) sum_of_max_similarities = torch.sum(torch.max(similarity_matrix, dim=0).values) avg_score = (sum_of_max_similarities / len(job_skills)).item() if len(job_skills) > 0 else 0 skill_count_factor = min(1.0, len(job_skills) / 5.0) score_val = avg_score * skill_count_factor matched_job_skills_mask = torch.any(similarity_matrix > 0.58, dim=0) all_missing_skills = [skill for i, skill in enumerate(job_skills) if not matched_job_skills_mask[i]] if user_skills and score_val >= 0.98: learning_plan_html = "

🎉 You have all the required skills!

" job_details_markdown += f"\n**Your skill match:** {score_val:.1%}" return job_details_markdown, duties, qualifications, description, learning_plan_html, gr.Accordion(visible=True), [], 0, gr.Button(visible=False) if user_skills: job_details_markdown += f"\n**Your skill match:** {score_val:.1%}" headline = "Great fit!" if score_val >= 0.8 else "Good progress!" if score_val >= 0.5 else "Solid starting point." learning_plan_html = f"

{headline} Focus on these skills to improve your match:

" skills_to_display = sorted(all_missing_skills)[:5] items_html = [f"
  • {ms}
    • Learn: {_course_links_for(ms)}
  • " for ms in skills_to_display] learning_plan_html += f"" return job_details_markdown, duties, qualifications, description, learning_plan_html, gr.Accordion(visible=True), [], 0, gr.Button(visible=False) else: headline = "

    To be a good fit for this role, you'll need to learn these skills:

    " skills_to_display = sorted(job_skills)[:5] items_html = [f"
  • {ms}
    • Learn: {_course_links_for(ms)}
  • " for ms in skills_to_display] learning_plan_html = f"{headline}" full_skill_list_for_state = sorted(job_skills) new_offset = len(skills_to_display) should_button_be_visible = len(full_skill_list_for_state) > 5 return job_details_markdown, duties, qualifications, description, learning_plan_html, gr.Accordion(visible=True), full_skill_list_for_state, new_offset, gr.Button(visible=should_button_be_visible) def load_more_skills(full_skills_list, current_offset): SKILLS_INCREMENT = 5 new_offset = current_offset + SKILLS_INCREMENT skills_to_display = full_skills_list[:new_offset] items_html = [f"
  • {ms}
    • Learn: {_course_links_for(ms)}
  • " for ms in skills_to_display] learning_plan_html = f"

    To be a good fit for this role, you'll need to learn these skills:

    " should_button_be_visible = new_offset < len(full_skills_list) return learning_plan_html, new_offset, gr.Button(visible=should_button_be_visible) def on_reset(): # --- MODIFIED: Added new default outputs for reset --- return ("", 3, "", pd.DataFrame(), None, gr.Dropdown(visible=False), gr.Accordion(visible=False), "Status: Ready.", "", "", "", "", gr.Markdown(visible=False), gr.Row(visible=False), [], 0, gr.Button(visible=False), pd.DataFrame(), gr.Accordion(visible=False)) print("Starting application initialization...") initialization_status = initialize_data_and_model() print(initialization_status) with gr.Blocks(theme=gr.themes.Soft()) as ui: gr.Markdown("# Hybrid Career Planner & Skill Gap Analyzer") gr.Markdown( """ Welcome to your personal career co-pilot! This tool uses AI to match your dream job description with real-world roles. Add your skills to see a detailed analysis of where you stand and what you need to learn to land the job. """ ) initial_matches_state = gr.State() missing_skills_state = gr.State([]) skills_offset_state = gr.State(0) with gr.Row(): with gr.Column(scale=3): dream_text = gr.Textbox(label='Your Dream Job Description', lines=3, placeholder="e.g., 'A role in a tech startup focused on machine learning...'") with gr.Accordion("Optional: Add Your Skills to Re-rank Results", open=False): with gr.Row(): skills_text = gr.Textbox(label='Your Skills (comma-separated)', placeholder="e.g., Python, data analysis", scale=3) rerank_btn = gr.Button("Re-rank", variant="secondary", scale=1) with gr.Column(scale=1): topk_slider = gr.Slider(minimum=1, maximum=5, value=3, step=1, label="Number of Matches") search_btn = gr.Button("Find Matches", variant="primary") reset_btn = gr.Button("Reset All") status_text = gr.Markdown("Status: Ready.") spelling_alert = gr.Markdown(visible=False) with gr.Row(visible=False) as spelling_row: search_anyway_btn = gr.Button("Search Anyway", variant="secondary") retype_btn = gr.Button("Let Me Fix It", variant="stop") df_output = gr.DataFrame(label="Job Matches (Sorted by Overall Relevance)", interactive=False) # --- NEW: Added the recommendations section --- with gr.Accordion("✨ Based on your current skills and career interest consider these jobs...", open=True, visible=False) as recommendations_accordion: recommendations_df_output = gr.DataFrame(label="Top Skill Matches", interactive=False) job_selector = gr.Dropdown(label="Select a job to see more details & learning plan:", visible=False) with gr.Accordion("Job Details & Learning Plan", open=False, visible=False) as details_accordion: job_details_markdown = gr.Markdown() with gr.Tabs(): with gr.TabItem("Duties"): duties_markdown = gr.Markdown() with gr.TabItem("Qualifications"): qualifications_markdown = gr.Markdown() with gr.TabItem("Full Description"): description_markdown = gr.Markdown() learning_plan_output = gr.HTML(label="Learning Plan") load_more_btn = gr.Button("Load More Skills", visible=False) # --- MODIFIED: Added new outputs to the click events --- search_btn.click(fn=find_matches_and_rank_with_check, inputs=[dream_text, topk_slider, skills_text], outputs=[status_text, initial_matches_state, df_output, job_selector, details_accordion, spelling_alert, spelling_row, recommendations_df_output, recommendations_accordion]) search_anyway_btn.click(fn=find_matches_and_rank_anyway, inputs=[dream_text, topk_slider, skills_text], outputs=[status_text, initial_matches_state, df_output, job_selector, details_accordion, spelling_alert, spelling_row, recommendations_df_output, recommendations_accordion]) retype_btn.click(lambda: ("Status: Ready for you to retype.", None, pd.DataFrame(), gr.Dropdown(visible=False), gr.Accordion(visible=False), gr.Markdown(visible=False), gr.Row(visible=False), pd.DataFrame(), gr.Accordion(visible=False)), outputs=[status_text, initial_matches_state, df_output, job_selector, details_accordion, spelling_alert, spelling_row, recommendations_df_output, recommendations_accordion]) reset_btn.click(fn=on_reset, outputs=[dream_text, topk_slider, skills_text, df_output, initial_matches_state, job_selector, details_accordion, status_text, job_details_markdown, duties_markdown, qualifications_markdown, description_markdown, spelling_alert, spelling_row, missing_skills_state, skills_offset_state, load_more_btn, recommendations_df_output, recommendations_accordion], queue=False) rerank_btn.click(fn=rerank_current_results, inputs=[initial_matches_state, skills_text, topk_slider], outputs=[status_text, df_output, job_selector, recommendations_df_output, recommendations_accordion]) job_selector.change(fn=on_select_job, inputs=[job_selector, skills_text], outputs=[job_details_markdown, duties_markdown, qualifications_markdown, description_markdown, learning_plan_output, details_accordion, missing_skills_state, skills_offset_state, load_more_btn]) load_more_btn.click(fn=load_more_skills, inputs=[missing_skills_state, skills_offset_state], outputs=[learning_plan_output, skills_offset_state, load_more_btn]) ui.launch()