Spaces:
Running
Running
File size: 40,641 Bytes
ec5be1d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 |
"""
π¬ Video Reasoning Demo - HuggingFace Spaces Version
This demo showcases the model's ability to reason over long videos using tool calls.
Designed with a modern, sleek interface featuring glassmorphism and smooth animations.
Adapted for HuggingFace Spaces deployment with videos hosted on HF Dataset.
"""
import json
import re
import os
from typing import Any, Dict, List, Optional
from dataclasses import dataclass
import gradio as gr
# ============================================================================
# Configuration
# ============================================================================
# HuggingFace Dataset URL for videos
HF_DATASET_URL = "https://huggingface.co/datasets/longvideotool/LongVT-Demo/resolve/main"
# Pre-parsed sample data (embedded to avoid file dependencies)
SAMPLE_DATA = [
{
"id": "sample_1",
"video_filename": "_FLyZoj7YAc.mp4",
"question": "Which animal is shown first lying motionless on a concrete surface with a group posing beside it, and later strapped onto a tractor being transported? Think first, call **crop_video** if needed, then answer.",
"thinking_steps": [
"The video presents a rapid succession of various animals in different settings, often with a heat-map overlay indicating \"interest points.\" We observe sequences featuring elephants interacting with vehicles around [0:20s β 1:00s], followed by a segment with large fish, including one being approached by a boat around [1:45s β 2:20s]. Later, there are shots of a crocodile and a jellyfish in various landscapes from approximately [3:00s β 3:40s]. Towards the end, an animal is seen motionless on concrete with people posing, which then transitions to it being strapped to a tractor. Given the question's specific details about lying motionless on a concrete surface with a group posing, I will examine the video segment around [5:00 β 5:17] to precisely identify the animal in the initial pose, as this window should capture the onset of this unique scene.",
"The current video segment from [300.30s β 317.60s] shows a fishing boat on the water around 5:00, followed by a close-up of a fishing reel around 5:05, then black and white images of people posing with large fish, specifically tuna, from approximately 5:10 to 5:20. While the segment concludes with a person being carried on a mat, which partially matches the \"strapped onto a tractor\" part of the question, this window does not contain any animal lying motionless on a concrete surface with a group posing. This evidence clearly indicates that the scene described in the question does not occur within this time frame. My earlier hypothesis about the relevant scene occurring around [5:00 β 5:17] was incorrect, and the relevant event must be located significantly earlier than initially estimated. Therefore, this window was mis-localized, and a revised search is needed to find the actual moment of the animal lying motionless.",
"This video segment from [172.00s β 191.00s] provides direct visual evidence for the question. Specifically, from approximately 186.00s to 190.00s, an alligator is clearly shown lying motionless on a concrete surface. Additionally, around 182.00s, a group of people is seen posing with the same alligator, which directly addresses the \"group posing beside it\" part of the query. This window perfectly matches the initial scenario described in the question, confirming the identity of the animal. My earlier global skim had missed this crucial segment, but this targeted search precisely captured the scene. This window was well-localized and fully sufficient for identifying the animal and the specific posing action."
],
"tool_calls": [
{"arguments": {"start_time": 300.3, "end_time": 317.6}},
{"arguments": {"start_time": 172.0, "end_time": 191.0}}
],
"final_answer": "An alligator.",
"ground_truth": "An alligator.",
"scores": {"accuracy": 1.0, "format": 1.0, "time": 0.2632}
},
{
"id": "sample_2",
"video_filename": "eTa1LAtqfsc.mp4",
"question": "What single Cyrillic word is written on the fuel tank of the truck that is refueled, later drops its trailer on a forest road, and then continues toward the excavation site? Think first, call **crop_video** if needed, then answer.",
"thinking_steps": [
"The video begins with a title card before transitioning to a top-down view of a snowy, industrial landscape, likely a mining operation, around [15s β 50s]. A large snowmobile-like vehicle is seen traveling on a snowy path around [1:00s β 1:30s], and the camera then follows several dump trucks navigating muddy roads [1:45s β 2:30s]. Around [3:00s β 3:30s], one of the trucks is shown being refueled at a fuel station. Later, around [5:45s β 5:55s], a truck drops its trailer on a forest road, before the same or a similar truck continues towards the excavation site around [5:57s β 6:00s]. To identify the Cyrillic word on the fuel tank of the truck that is refueled, I will crop the video segment around [5:45s β 5:55s] to get a closer look at the fuel tank during the refueling process.",
"The video segment from [345.00s β 355.00s] shows the truck, identifiable as a Volvo, approaching and then reversing to drop its trailer on the forest road. While the trailer is clearly visible during this segment, the fuel tank of the truck itself is not prominently displayed. There are no visible Cyrillic words on the fuel tank or anywhere else on the truck in these frames. The action is focused on the trailer drop rather than the truck's fuel tank. This window was mis-localized, as it captured the trailer drop but not the refueling or the fuel tank with the Cyrillic word. A revised search exploring later parts is needed to examine the actual refueling segment more closely.",
"The video segment [357.00s β 441.00s] clearly shows the truck, a Volvo, continuing its journey towards an excavation site after dropping its trailer. Around 360.00s to 365.00s, the fuel tank of the truck is visible, and the Cyrillic word \"ΠΠΠΠΠΠ¬\" (meaning \"Diesel\") is clearly written on the fuel tank. This directly matches the description of the truck that is refueled, drops its trailer, and continues toward the excavation site. This window was well-localized and fully suffices for identifying the Cyrillic word on the fuel tank."
],
"tool_calls": [
{"arguments": {"start_time": 345.0, "end_time": 355.0}},
{"arguments": {"start_time": 357.0, "end_time": 441.0}}
],
"final_answer": "ΠΠΠΠΠΠ¬",
"ground_truth": "ΠΠΠΠΠΠ¬",
"scores": {"accuracy": 1.0, "format": 1.0, "time": 0.1190}
},
{
"id": "sample_3",
"video_filename": "Erph1L_XwVQ.mp4",
"question": "Which two-word phrase is displayed on a plain white background right after the split-screen maps contrasting the \"White primary\" and \"General election\" voting areas disappear? Think first, call **crop_video** if needed, then answer.",
"thinking_steps": [
"The video opens with title cards and a brief clip of people kayaking, then introduces the speaker, Lawrence Lessig, who proceeds to discuss issues of democracy and voting rights, often juxtaposing historical images with present-day visuals [35.0s β 190.0s]. He covers topics like the \"White primary\" and \"General election\" through split-screen maps and textual information around [195.0s β 219.0s]. The speaker then transitions to discuss \"Relevant Funders\" and how campaign finance reforms could impact democracy, displaying relevant statistics and maps [220.0s β 320.0s], before concluding with a call to action to reclaim democracy [325.0s β 345.0s]. To pinpoint the exact phrase after the \"White primary\" and \"General election\" maps, I will examine the segment immediately following their disappearance, focusing on the visual transition. I will crop the video from [218.0s β 222.0s] to capture this transition and the potential answer.",
"The video segment from [218.00s β 222.00s] clearly shows the split-screen maps of the \"White primary\" and \"General election\" voting areas, as described in the question, ongoing at the beginning of this window. Following these maps, there is a brief black screen transition, after which the phrase \"not totally\" appears centered on a plain white background. This phrase then transitions into an illustration of a man turning a knob, which is the visual presented immediately after the maps. My initial hypothesis was to find the answer within this window; however, the crucial visual element \"disappearing\" is not fully captured here, as the maps are still visible at the start of this segment. This window provides part of the answer, but the precise moment the maps disappear is either at the very beginning of this segment or just before, indicating the need to extend the search slightly later. This window was slightly mis-localized as it captured the transition *after* the maps but not the maps' complete disappearance; therefore, I will need to inspect a slightly later segment to find the exact point of disappearance and the subsequent display of the two-word phrase.",
"This video segment, from [220.000, 226.000], provides clear evidence. The split-screen maps contrasting the \"White primary\" and \"General election\" voting areas are visible at the beginning of the segment. These maps then disappear around [221.00s], after which the phrase \"not totally\" appears on a plain white background from approximately [222.00s] until about [224.00s], exactly as before. This window fully confirms the earlier identification of the phrase and its visual context. My initial assessment was correct that the phrase \"not totally\" is displayed; revised: the previous window was indeed slightly mis-localized as it captured the transition *after* the maps but not the maps' complete disappearance, whereas this segment perfectly captures the disappearance of the maps and the immediate subsequent display of the phrase on a white background. This window was well-localized and fully suffices for its subgoal, capturing the precise moment the maps disappear and the subsequent appearance of the two-word phrase."
],
"tool_calls": [
{"arguments": {"start_time": 218.0, "end_time": 222.0}},
{"arguments": {"start_time": 220.0, "end_time": 226.0}}
],
"final_answer": "not totally",
"ground_truth": "not totally",
"scores": {"accuracy": 1.0, "format": 1.0, "time": 0.6250}
},
{
"id": "sample_4",
"video_filename": "_jHeXEJseBk.mp4",
"question": "What laptop brand is presented first while a gloved hand uses its ScreenPad 2.0 touchpad and later while it balances on a skateboard ramp beside the NVIDIA 2 GB MX250 text? Think first, call **crop_video** if needed, then answer.",
"thinking_steps": [
"The video presents a countdown of laptops, starting with the Acer Swift 3, showcasing its design and screen around [0:00s β 0:05s]. This is followed by the Asus VivoBook S15, highlighting its unique ScreenPad 2.0 touchpad, which a gloved hand is seen interacting with at approximately [5:14s β 5:18s]. The same VivoBook later appearsbalanced on a skateboard ramp next to text referencing the NVIDIA 2 GB MX250 graphics chip, around [5:50s β 5:54s]. This specific sequence of the Asus VivoBook, including both the ScreenPad interaction and the MX250 context, precisely matches the query's description. This window successfully captures the key elements mentioned in the question, confirming the brand and specific features. I need to zoom in a specific time window to identify the brand and match all described elements is contained within this segment.",
"The video segment from [314.000s β 358.000s] displays various laptops, including an HP model around β320sβ325s and a Lenovo Yoga C740 from β340sβ345s. While the HP screen shows a \"ScreenPad 2.0\" label, the visual of a gloved hand actively using it is not present in these frames, nor is any laptop shown balancing on a skateboard ramp with NVIDIA 2 GB MX250 text. This window appears to showcase different laptops and their features, but not the specific Asus VivoBook S15 or the requested actions. This evidence suggests that the critical sequence of the Asus VivoBook demonstrating its ScreenPad 2.0 and then appearing on the skateboard ramp (around [5:14s β 5:54s]) is not present here, revising the earlier hypothesis that the Asus VivoBook was necessarily presented in that order within the entire video. This window was mis-localized for the specific Asus VivoBook sequence, although it does show a laptop with ScreenPad 2.0. The previous localization at [5:14s β 5:18s] and [5:50s β 5:54s] for the ScreenPad and MX250 contexts must therefore be the intended reference points, implying the question is asking about those specific instances rather than locating the brand name in this particular segment. This confirms that my initial guess of Asus is correct."
],
"tool_calls": [
{"arguments": {"start_time": 314.0, "end_time": 358.0}}
],
"final_answer": "Asus",
"ground_truth": "ASUS VivoBook",
"scores": {"accuracy": 1.0, "format": 1.0, "time": 0.0}
},
{
"id": "sample_5",
"video_filename": "_JskH8-GvyU.mp4",
"question": "After the TicWatch earlier shows the music playback screen for \"Pontiac Shuffle,\" to which contact does the user later dictate a text message using the watch? Think first, call **crop_video** if needed, then answer.",
"thinking_steps": [
"The video begins with an intro screen, then shows the unboxing of a TicWatch, including its various features and accessories [10.00s β 200.00s]. The user pairs the watch with a phone and demonstrates different applications like weather, fitness tracking, and voice commands [200.00s β 460.00s]. Later, the watch is shown displaying notifications and with a music playback screen for \"Pontiac Shuffle\" around [470.00s β 473.00s]. To find when the user dictates a text message *after* this, I will focus on the period immediately following the music playback, specifically looking for text message composition on the watch [474.00s β 480.00s].",
"This window [474.000,480.000] shows the watch displaying a stopwatch application, with times like 00:00, 00:04, and 00:05 visible on the screen. There is no music playback screen for \"Pontiac Shuffle\" present in these frames, nor are there any indications of a text message being dictated or displayed. This evidence indicates that the current window is not the correct segment of the video for answering the question, as it does not contain the specified \"Pontiac Shuffle\" music playback which is a prerequisite condition mentioned in the full prompt. My earlier hypothesis to look immediately after the music playback was misdirected, as the music playback event itself is not present here. Therefore, this window was mis-localized, and a revised search is needed to find the actual moment of the \"Pontiac Shuffle\" music playback screen at a later point in the video, after which I can then look for the dictated text message."
],
"tool_calls": [
{"arguments": {"start_time": 474.0, "end_time": 480.0}}
],
"final_answer": "not sure",
"ground_truth": "Vijay Vyas",
"scores": {"accuracy": 1.0, "format": 1.0, "time": 0.0}
}
]
@dataclass
class DemoConfig:
"""Demo configuration"""
title: str = "π¬ Long Video Reasoning"
subtitle: str = "Explore how AI reasons through long videos step by step"
samples: List[Dict[str, Any]] = None
def __post_init__(self):
if self.samples is None:
self.samples = SAMPLE_DATA
# ============================================================================
# UI Components
# ============================================================================
def create_thinking_html(thinking_steps: List[str], tool_calls: List[Dict]) -> str:
"""Create beautiful HTML for thinking process visualization"""
html = '<div class="reasoning-chain">'
num_tool_calls = len(tool_calls)
if num_tool_calls >= 2:
step_labels = ["Global Skim", "Finer-grained Inspection", "Pre-Answer Deliberation"]
else:
step_labels = ["Global Skim", "Finer-grained Reasoning"]
def sec_to_mmss(sec):
try:
s = float(sec)
mins = int(s // 60)
secs = int(s % 60)
return f"{mins}:{secs:02d}"
except:
return str(sec)
for i, think in enumerate(thinking_steps):
label = step_labels[i] if i < len(step_labels) else step_labels[-1]
html += f'''
<div class="reasoning-step thinking-step" style="animation-delay: {i * 0.1}s">
<div class="step-header">
<span class="step-icon">π§ </span>
<span class="step-label">{label}</span>
</div>
<div class="step-content-scroll">
{think}
</div>
</div>
'''
if i < len(tool_calls):
tc = tool_calls[i]
args = tc.get("arguments", {})
if isinstance(args, dict):
start_sec = args.get("start_time", 0)
end_sec = args.get("end_time", 0)
start_fmt = sec_to_mmss(start_sec)
end_fmt = sec_to_mmss(end_sec)
html += f'''
<div class="reasoning-step tool-step" style="animation-delay: {i * 0.1 + 0.05}s">
<div class="step-header">
<span class="step-icon">π¬</span>
<span class="step-label">crop_video</span>
</div>
<div class="step-content tool-args">
<span class="time-badge">{start_fmt} β {end_fmt}</span>
</div>
</div>
'''
html += '</div>'
return html
def create_answer_comparison_html(final_answer: str, ground_truth: str, scores: Dict) -> str:
"""Create comparison view between model answer and ground truth"""
is_correct = scores.get("accuracy", 0) >= 0.5
return f'''
<div class="answer-comparison">
<div class="answer-card model-answer {'correct' if is_correct else 'incorrect'}">
<div class="answer-header">
<span class="answer-icon">π€</span>
<span class="answer-label">Model Answer</span>
</div>
<div class="answer-content">{final_answer}</div>
</div>
<div class="answer-card ground-truth">
<div class="answer-header">
<span class="answer-icon">β
</span>
<span class="answer-label">Ground Truth</span>
</div>
<div class="answer-content">{ground_truth}</div>
</div>
</div>
'''
def create_video_html(video_filename: str, tool_calls: List[Dict], selected_idx: int = 1, total_samples: int = 5) -> str:
"""Create video player with timeline markers and sample selector"""
if not video_filename:
return '<div class="no-video">No video available</div>'
# Build video URL using HuggingFace Dataset
video_url = f"{HF_DATASET_URL}/{video_filename}"
# Create timeline markers from tool calls
markers_html = ""
for i, tc in enumerate(tool_calls):
args = tc.get("arguments", {})
if isinstance(args, dict) and "start_time" in args:
start = float(args.get("start_time", 0))
end = float(args.get("end_time", start + 10))
markers_html += f'''
<div class="timeline-marker" data-start="{start}" data-end="{end}"
title="Step {i+1}: {start}s - {end}s">
<span class="marker-label">{i+1}</span>
</div>
'''
# Create sample selector buttons
sample_buttons = ""
for i in range(1, total_samples + 1):
active = "active" if i == selected_idx else ""
sample_buttons += f'<div class="sample-num-btn {active}" data-sample="{i}">{i}</div>'
return f'''
<div class="video-container">
<video id="demo-video" controls preload="metadata">
<source src="{video_url}" type="video/mp4">
Your browser does not support video playback.
</video>
<div class="video-timeline sample-row">
<span class="timeline-label">SELECTED VIDEOS</span>
<div class="sample-num-buttons">{sample_buttons}</div>
</div>
<div class="video-timeline">
<span class="timeline-label">CROPPED SEGMENTS</span>
<div class="timeline-markers">
{markers_html}
</div>
</div>
</div>
'''
# ============================================================================
# Styles
# ============================================================================
CSS = """
/* ============================================
π¨ Modern Dark Theme with Glassmorphism
============================================ */
:root {
--bg-primary: #0a0a0f;
--bg-secondary: #12121a;
--bg-tertiary: #1a1a25;
--bg-glass: rgba(255, 255, 255, 0.03);
--border-glass: rgba(255, 255, 255, 0.08);
--accent-primary: #6366f1;
--accent-secondary: #8b5cf6;
--accent-gradient: linear-gradient(135deg, #6366f1 0%, #8b5cf6 50%, #a855f7 100%);
--text-primary: #f8fafc;
--text-secondary: #94a3b8;
--text-muted: #64748b;
--success: #22c55e;
--error: #ef4444;
--warning: #f59e0b;
--radius-sm: 8px;
--radius-md: 12px;
--radius-lg: 20px;
--radius-xl: 28px;
--shadow-glow: 0 0 40px rgba(99, 102, 241, 0.15);
--shadow-card: 0 8px 32px rgba(0, 0, 0, 0.4);
}
* {
margin: 0;
padding: 0;
box-sizing: border-box;
}
body, .gradio-container {
background: var(--bg-primary) !important;
color: var(--text-primary) !important;
font-family: 'SF Pro Display', -apple-system, BlinkMacSystemFont, 'Segoe UI', sans-serif !important;
}
.gradio-container {
max-width: 1600px !important;
margin: 0 auto !important;
}
/* Header Styles */
.demo-header {
text-align: center;
padding: 6px 20px 8px;
background: linear-gradient(180deg, rgba(99, 102, 241, 0.08) 0%, transparent 100%);
border-bottom: 1px solid var(--border-glass);
margin-bottom: 10px;
}
.demo-title {
font-size: 2.6rem;
font-weight: 800;
margin: 0 0 2px 0;
letter-spacing: 0.5px;
line-height: 1.2;
background-image: linear-gradient(120deg,
#a41e61,
#9e289e,
#7a45c9,
#80c4db,
#5dd3bb,
#e3ca66
);
background-size: 300% 300%;
-webkit-background-clip: text;
background-clip: text;
-webkit-text-fill-color: transparent;
color: transparent;
animation: cyberSweep 6s ease-in-out infinite;
}
@keyframes cyberSweep {
0% { background-position: 0% 50%; }
50% { background-position: 100% 50%; }
100% { background-position: 0% 50%; }
}
.demo-subtitle-main {
font-size: 1.45rem;
color: var(--text-primary);
font-weight: 600;
margin-bottom: 2px;
opacity: 0.95;
}
.demo-subtitle {
font-size: 1.1rem;
color: var(--text-secondary);
max-width: 900px;
margin: 0 auto;
line-height: 1.5;
}
/* Badge row */
.badge-row {
display: flex;
justify-content: center;
gap: 10px;
margin-top: 12px;
flex-wrap: wrap;
}
.badge-link {
display: inline-flex;
align-items: center;
gap: 8px;
background: #363636;
color: white !important;
padding: 10px 18px;
border-radius: 24px;
font-size: 0.95rem;
font-weight: 500;
text-decoration: none !important;
transition: all 0.2s ease;
border: 1px solid transparent;
}
.badge-link:hover {
background: #4a4a4a;
transform: translateY(-2px);
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.3);
}
.badge-link i {
font-size: 1.1em;
}
.badge-emoji {
font-size: 1.1em;
line-height: 1;
}
.badge-link.daily-paper {
background: linear-gradient(135deg, #6366f1, #8b5cf6);
border-color: rgba(139, 92, 246, 0.5);
}
.badge-link.daily-paper:hover {
background: linear-gradient(135deg, #7c7ff7, #9d6ff8);
}
/* Main Content Grid */
.main-content {
display: grid;
grid-template-columns: 1fr 1fr;
gap: 20px;
padding: 0 24px 20px;
align-items: start;
}
.main-content > div {
display: flex;
flex-direction: column;
gap: 6px;
}
@media (max-width: 1200px) {
.main-content {
grid-template-columns: 1fr;
}
}
/* Glass Card */
.glass-card {
background: var(--bg-glass);
backdrop-filter: blur(20px);
-webkit-backdrop-filter: blur(20px);
border: 1px solid var(--border-glass);
border-radius: var(--radius-lg);
padding: 16px;
box-shadow: var(--shadow-card);
}
.card-title {
font-size: 0.85rem;
font-weight: 600;
color: var(--text-secondary);
text-transform: uppercase;
letter-spacing: 0.1em;
margin-bottom: 6px;
margin-top: 8px;
display: flex;
align-items: center;
gap: 8px;
}
.card-title::before {
content: '';
width: 4px;
height: 20px;
background: var(--accent-gradient);
border-radius: 2px;
}
/* Question Box */
.question-box {
background: linear-gradient(135deg, rgba(99, 102, 241, 0.15) 0%, rgba(139, 92, 246, 0.1) 100%);
border: 1px solid rgba(99, 102, 241, 0.3);
border-radius: var(--radius-lg);
padding: 24px;
margin-bottom: 24px;
font-size: 1.1rem;
line-height: 1.7;
color: var(--text-primary);
}
/* Video Container */
.video-container {
border-radius: var(--radius-lg);
overflow: hidden;
background: var(--bg-secondary);
position: relative;
}
.video-container video {
width: 100%;
display: block;
max-height: 400px;
object-fit: contain;
background: #000;
}
/* Video group with selector */
.video-group {
background: var(--bg-glass) !important;
border: 1px solid var(--border-glass) !important;
border-radius: var(--radius-lg) !important;
padding: 16px !important;
box-shadow: var(--shadow-card) !important;
}
.video-html {
margin-bottom: 0 !important;
}
.video-timeline {
display: flex;
align-items: center;
gap: 12px;
padding: 10px 16px;
background: var(--bg-tertiary);
}
.timeline-label {
font-size: 0.7rem;
font-weight: 600;
color: var(--text-muted);
text-transform: uppercase;
letter-spacing: 0.08em;
white-space: nowrap;
}
.timeline-markers {
display: flex;
gap: 8px;
flex-wrap: wrap;
}
.timeline-marker {
background: var(--bg-tertiary);
color: var(--text-secondary);
width: 28px;
height: 28px;
border-radius: 50%;
font-size: 0.8rem;
font-weight: 600;
cursor: pointer;
transition: all 0.2s;
display: flex;
align-items: center;
justify-content: center;
border: 2px solid transparent;
}
.timeline-marker:hover {
transform: scale(1.1);
border-color: var(--accent-primary);
}
.timeline-marker.active {
background: var(--accent-gradient);
color: white;
border-color: var(--accent-primary);
box-shadow: 0 4px 20px rgba(99, 102, 241, 0.5);
}
/* Sample selector buttons */
.sample-row {
margin-bottom: 4px;
}
.sample-num-buttons {
display: flex;
gap: 8px;
}
.sample-num-btn {
background: var(--bg-tertiary);
color: var(--text-secondary);
width: 28px;
height: 28px;
border-radius: 50%;
font-size: 0.8rem;
font-weight: 600;
cursor: pointer;
transition: all 0.2s;
display: flex;
align-items: center;
justify-content: center;
border: 2px solid transparent;
}
.sample-num-btn:hover {
transform: scale(1.1);
border-color: var(--accent-primary);
}
.sample-num-btn.active {
background: var(--accent-gradient);
color: white;
border-color: var(--accent-primary);
}
/* Hidden radio for sample selection */
.hidden-radio {
position: absolute !important;
opacity: 0 !important;
pointer-events: none !important;
height: 0 !important;
overflow: hidden !important;
}
/* Column alignment */
.left-column, .right-column {
display: flex !important;
flex-direction: column !important;
gap: 6px !important;
}
.video-group {
height: 520px !important;
min-height: 520px !important;
max-height: 520px !important;
overflow: hidden;
}
.reasoning-card {
height: 520px !important;
min-height: 520px !important;
max-height: 520px !important;
overflow-y: auto;
}
.left-column .card-title:last-of-type,
.right-column .card-title:last-of-type {
margin-top: 36px !important;
}
.question-card {
min-height: 140px;
}
.response-card {
min-height: 140px;
}
/* Reasoning Chain */
.reasoning-chain {
display: flex;
flex-direction: column;
gap: 16px;
max-height: 500px;
overflow-y: auto;
padding-right: 8px;
}
.reasoning-chain::-webkit-scrollbar {
width: 6px;
}
.reasoning-chain::-webkit-scrollbar-track {
background: var(--bg-tertiary);
border-radius: 3px;
}
.reasoning-chain::-webkit-scrollbar-thumb {
background: var(--accent-primary);
border-radius: 3px;
}
.reasoning-step {
background: var(--bg-secondary);
border-radius: var(--radius-md);
padding: 20px;
border-left: 3px solid transparent;
animation: slideIn 0.5s ease forwards;
opacity: 0;
transform: translateX(-20px);
}
@keyframes slideIn {
to {
opacity: 1;
transform: translateX(0);
}
}
.thinking-step {
border-left-color: var(--accent-primary);
}
.tool-step {
border-left-color: var(--warning);
background: rgba(245, 158, 11, 0.05);
}
.step-header {
display: flex;
align-items: center;
gap: 10px;
margin-bottom: 12px;
}
.step-icon {
font-size: 1.2rem;
}
.step-label {
font-weight: 600;
color: var(--text-secondary);
font-size: 0.9rem;
text-transform: uppercase;
letter-spacing: 0.05em;
}
.step-content {
color: var(--text-primary);
line-height: 1.6;
font-size: 0.9rem;
}
.step-content-scroll {
color: var(--text-primary);
line-height: 1.6;
font-size: 0.9rem;
max-height: 120px;
overflow-y: auto;
padding-right: 8px;
}
.step-content-scroll::-webkit-scrollbar {
width: 4px;
}
.step-content-scroll::-webkit-scrollbar-track {
background: var(--bg-tertiary);
border-radius: 2px;
}
.step-content-scroll::-webkit-scrollbar-thumb {
background: var(--accent-primary);
border-radius: 2px;
}
.time-badge {
display: inline-block;
background: var(--accent-gradient);
color: white;
padding: 8px 16px;
border-radius: 20px;
font-weight: 600;
font-family: 'SF Mono', 'Fira Code', monospace;
}
/* Answer Comparison */
.answer-comparison {
display: flex;
flex-direction: column;
gap: 20px;
}
.answer-card {
background: var(--bg-secondary);
border-radius: var(--radius-lg);
padding: 24px;
border: 1px solid var(--border-glass);
}
.answer-card.model-answer.correct {
border-color: var(--success);
background: rgba(34, 197, 94, 0.05);
}
.answer-card.model-answer.incorrect {
border-color: var(--error);
background: rgba(239, 68, 68, 0.05);
}
.answer-card.ground-truth {
border-color: var(--accent-primary);
background: rgba(99, 102, 241, 0.05);
}
.answer-header {
display: flex;
align-items: center;
gap: 10px;
margin-bottom: 12px;
}
.answer-icon {
font-size: 1.3rem;
}
.answer-label {
font-weight: 600;
color: var(--text-secondary);
text-transform: uppercase;
font-size: 0.85rem;
letter-spacing: 0.05em;
}
.answer-content {
font-size: 1.1rem;
color: var(--text-primary);
line-height: 1.6;
}
.no-video {
padding: 60px;
text-align: center;
color: var(--text-muted);
background: var(--bg-secondary);
border-radius: var(--radius-lg);
}
/* Footer */
.demo-footer {
text-align: center;
padding: 16px 20px;
color: var(--text-muted);
font-size: 0.85rem;
border-top: 1px solid var(--border-glass);
margin-top: 16px;
}
"""
JS = """
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.4.0/css/all.min.css">
<link rel="stylesheet" href="https://cdn.jsdelivr.net/gh/jpswalsh/academicons@1/css/academicons.min.css">
<script>
(function() {
document.addEventListener('click', function(e) {
const sampleBtn = e.target.closest('.sample-num-btn');
if (sampleBtn) {
e.preventDefault();
e.stopPropagation();
const sampleIdx = parseInt(sampleBtn.dataset.sample);
const radios = document.querySelectorAll('.hidden-radio input[type="radio"]');
if (radios.length >= sampleIdx) {
radios[sampleIdx - 1].click();
}
return;
}
const marker = e.target.closest('.timeline-marker');
if (marker) {
document.querySelectorAll('.timeline-marker').forEach(m => m.classList.remove('active'));
marker.classList.add('active');
const video = document.getElementById('demo-video');
if (video) {
const start = parseFloat(marker.dataset.start);
video.currentTime = start;
video.play();
}
}
});
function initScrollAnimations() {
const observer = new IntersectionObserver((entries) => {
entries.forEach(entry => {
if (entry.isIntersecting) {
entry.target.classList.add('visible');
}
});
}, { threshold: 0.1 });
document.querySelectorAll('.glass-card').forEach(el => {
observer.observe(el);
});
}
document.addEventListener('DOMContentLoaded', function() {
initScrollAnimations();
});
})();
</script>
"""
# ============================================================================
# Main Application
# ============================================================================
def create_demo_app():
"""Create the Gradio demo application"""
config = DemoConfig()
samples = config.samples
with gr.Blocks(css=CSS, head=JS, title="LongVT Demo") as demo:
# Header
gr.HTML('''
<div class="demo-header">
<h1 class="demo-title">LongVT</h1>
<p class="demo-subtitle-main">
Incentivizing "Thinking with Long Videos" via Native Tool Calling
</p>
<p class="demo-subtitle">
See how LongVT navigates through long videos, making intelligent decisions about which segments to analyze,<br>reasoning step by step to find answers.
</p>
<div class="badge-row">
<a href="https://arxiv.org/abs/2511.20785" target="_blank" class="badge-link">
<i class="ai ai-arxiv"></i>
<span>arXiv</span>
</a>
<a href="https://evolvinglmms-lab.github.io/LongVT/" target="_blank" class="badge-link">
<i class="fas fa-globe"></i>
<span>Webpage</span>
</a>
<a href="https://github.com/EvolvingLMMs-Lab/LongVT" target="_blank" class="badge-link">
<i class="fab fa-github"></i>
<span>Code</span>
</a>
<a href="https://huggingface.co/datasets/longvideotool/LongVT-Parquet" target="_blank" class="badge-link">
<i class="fas fa-database"></i>
<span>Data</span>
</a>
<a href="https://huggingface.co/longvideotool" target="_blank" class="badge-link">
<span class="badge-emoji">π€</span>
<span>Model</span>
</a>
<a href="https://www.lmms-lab.com/posts/longvt/" target="_blank" class="badge-link">
<i class="fas fa-blog"></i>
<span>Blog</span>
</a>
<a href="https://huggingface.co/papers/2511.20785" target="_blank" class="badge-link daily-paper">
<span class="badge-emoji">π</span>
<span>Daily Paper</span>
</a>
</div>
</div>
''')
if samples and len(samples) > 0:
initial_sample = samples[0]
with gr.Row(elem_classes="main-content"):
# Left Column: Video & Question
with gr.Column(elem_classes="left-column"):
gr.HTML('<div class="card-title">π¬ Video</div>')
with gr.Group(elem_classes="video-group"):
video_output = gr.HTML(
value=create_video_html(initial_sample["video_filename"], initial_sample["tool_calls"], 1, len(samples)),
elem_classes="video-html"
)
sample_selector = gr.Radio(
choices=[f"Sample {i+1}" for i in range(len(samples))],
value="Sample 1",
label="",
elem_classes="hidden-radio"
)
gr.HTML('<div class="card-title">β Query</div>')
question_output = gr.HTML(
value=f'<div class="question-box">{initial_sample["question"]}</div>',
elem_classes="glass-card question-card"
)
# Right Column: Reasoning & Response
with gr.Column(elem_classes="right-column"):
gr.HTML('<div class="card-title">π§ Reasoning Process</div>')
thinking_output = gr.HTML(
value=create_thinking_html(initial_sample["thinking_steps"], initial_sample["tool_calls"]),
elem_classes="glass-card reasoning-card"
)
gr.HTML('<div class="card-title">π Response</div>')
answer_output = gr.HTML(
value=create_answer_comparison_html(
initial_sample["final_answer"],
initial_sample["ground_truth"],
initial_sample["scores"]
),
elem_classes="glass-card response-card"
)
def update_display(sample_choice):
if not sample_choice:
return gr.update(), gr.update(), gr.update(), gr.update()
sample_idx = int(sample_choice.split()[-1]) - 1
if sample_idx < len(samples):
s = samples[sample_idx]
return (
create_video_html(s["video_filename"], s["tool_calls"], sample_idx + 1, len(samples)),
f'<div class="question-box">{s["question"]}</div>',
create_thinking_html(s["thinking_steps"], s["tool_calls"]),
create_answer_comparison_html(s["final_answer"], s["ground_truth"], s["scores"])
)
return gr.update(), gr.update(), gr.update(), gr.update()
sample_selector.change(
fn=update_display,
inputs=[sample_selector],
outputs=[video_output, question_output, thinking_output, answer_output]
)
# Footer
gr.HTML('''
<div class="demo-footer">
<p>π Powered by LMMs-Lab</p>
</div>
''')
return demo
# Create and launch the app
demo = create_demo_app()
if __name__ == "__main__":
demo.launch()
|