maxsi commited on
Commit
4bfc9f6
·
1 Parent(s): e6e8897

Added urgency, brand impact and issue categories

Browse files
Files changed (2) hide show
  1. app.py +159 -37
  2. requirements.txt +4 -1
app.py CHANGED
@@ -1,60 +1,182 @@
1
  import gradio as gr
2
  from transformers import pipeline
3
  import pandas as pd
4
- import io
5
- import csv
6
  import os
 
 
 
 
 
 
 
 
 
7
 
8
- # Initialize the zero-shot classification pipeline
9
- classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
 
 
 
10
 
11
- # Define the candidate labels for sentiment analysis
12
- candidate_labels = ["positive", "negative", "neutral"]
 
 
 
 
 
13
 
14
- def analyze_sentiment(text):
15
  """
16
- Analyze sentiment of a single post using zero-shot classification
17
  """
18
- result = classifier(text, candidate_labels)
19
- # Get the label with highest score
20
- sentiment = result['labels'][0]
21
- return sentiment
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
 
23
  def process_csv(file):
24
  """
25
- Process posts from CSV file and return results as a CSV file
26
  """
27
  try:
28
  # Read the input CSV file
29
  df = pd.read_csv(file.name)
30
 
31
- # Verify required columns exist
32
  if 'post_id' not in df.columns or 'text' not in df.columns:
33
  return None, "Error: CSV must contain 'post_id' and 'text' columns"
34
 
35
- # Apply sentiment analysis to each row
36
- df['sentiment'] = df['text'].apply(analyze_sentiment)
 
 
 
 
 
 
37
 
38
- # Create output CSV file
39
- output_file = "sentiment_analysis_results.csv"
40
- df.to_csv(output_file, index=False)
41
 
42
- return output_file, "Analysis completed successfully!"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43
 
44
  except Exception as e:
45
- return None, f"Error processing CSV: {str(e)}"
46
 
47
- # Create example CSV file
48
  def create_example_file():
49
  """
50
  Create an example CSV file for demonstration
51
  """
52
  example_data = {
53
- 'post_id': [1, 2, 3],
54
  'text': [
55
- "I absolutely love this product! Best purchase ever!",
56
- "This is terrible service, never coming back.",
57
- "The weather is quite nice today."
 
 
58
  ]
59
  }
60
  df = pd.DataFrame(example_data)
@@ -75,29 +197,29 @@ iface = gr.Interface(
75
  )
76
  ],
77
  outputs=[
78
- gr.File(label="Download Results"),
79
- gr.Textbox(label="Status")
80
  ],
81
- title="Social Media Sentiment Analyzer",
82
  description="""
83
- Analyze the sentiment of multiple social media posts using zero-shot classification.
 
 
 
 
 
 
84
 
85
  Input CSV format:
86
  - Required columns: 'post_id', 'text'
87
  - Each row should contain a unique post ID and the post text
88
-
89
- Output CSV will contain:
90
- - post_id: Original post ID
91
- - text: Original post text
92
- - sentiment: Analyzed sentiment (positive/negative/neutral)
93
  """,
94
  examples=[
95
- [example_file] # Use the created example file
96
  ]
97
  )
98
 
99
  if __name__ == "__main__":
100
- # Clean up example file when the program exits
101
  try:
102
  iface.launch()
103
  finally:
 
1
  import gradio as gr
2
  from transformers import pipeline
3
  import pandas as pd
4
+ import numpy as np
 
5
  import os
6
+ from datetime import datetime
7
+ import plotly.graph_objects as go
8
+ from plotly.subplots import make_subplots
9
+ import base64
10
+ import io
11
+
12
+ # [Previous imports and constants remain the same]
13
+ # Initialize the classification pipelines
14
+ sentiment_classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
15
 
16
+ # Define various classification labels
17
+ SENTIMENT_LABELS = ["positive", "negative", "neutral"]
18
+ URGENCY_LABELS = ["critical", "high", "medium", "low"]
19
+ BRAND_IMPACT_LABELS = ["severe", "moderate", "minimal"]
20
+ ISSUE_CATEGORIES = ["product", "service", "security", "fraud", "compliance", "technical", "billing", "general"]
21
 
22
+ # [Previous keyword definitions and helper functions remain the same]
23
+ CRITICAL_KEYWORDS = {
24
+ 'security': ['hack', 'breach', 'leaked', 'stolen', 'unauthorized', 'privacy'],
25
+ 'fraud': ['scam', 'fraud', 'fake', 'unauthorized charge', 'stolen'],
26
+ 'compliance': ['lawsuit', 'legal', 'regulation', 'complaint', 'policy violation'],
27
+ 'sensitive': ['racist', 'discrimination', 'harassment', 'abuse', 'offensive']
28
+ }
29
 
30
+ def create_pie_charts(df):
31
  """
32
+ Create pie charts for Urgency, Brand Impact, and Critical Issues
33
  """
34
+ # Create a figure with subplots
35
+ fig = make_subplots(
36
+ rows=1, cols=3,
37
+ subplot_titles=('Urgency Distribution', 'Brand Impact Distribution', 'Critical Issues Distribution'),
38
+ specs=[[{'type':'pie'}, {'type':'pie'}, {'type':'pie'}]]
39
+ )
40
+
41
+ # Urgency Pie Chart
42
+ urgency_counts = df['urgency'].value_counts()
43
+ fig.add_trace(
44
+ go.Pie(labels=urgency_counts.index, values=urgency_counts.values,
45
+ marker_colors=['#FF0000', '#FFA500', '#FFFF00', '#90EE90']),
46
+ row=1, col=1
47
+ )
48
+
49
+ # Brand Impact Pie Chart
50
+ # impact_counts = df['brand_impact'].value_counts()
51
+ # fig.add_trace(
52
+ # go.Pie(labels=impact_counts.index, values=impact_counts.values,
53
+ # marker_colors=['#FF0000', '#FFA500', '#90EE90']),
54
+ # row=1, col=2
55
+ # )
56
+
57
+ # Critical Issues Pie Chart
58
+ # Split the combined issues and count unique occurrences
59
+ all_issues = df[df['critical_issues'] != 'none']['critical_issues'].str.split('|').explode()
60
+ # if len(all_issues) == 0:
61
+ # issue_counts = pd.Series({'No Critical Issues': 1})
62
+ # else:
63
+ # issue_counts = all_issues.value_counts()
64
+
65
+ # fig.add_trace(
66
+ # go.Pie(labels=issue_counts.index, values=issue_counts.values,
67
+ # marker_colors=['#FF0000', '#FFA500', '#FFFF00', '#90EE90', '#4169E1']),
68
+ # row=1, col=3
69
+ # )
70
+
71
+ # Update layout
72
+ fig.update_layout(
73
+ height=400,
74
+ width=1200,
75
+ showlegend=True,
76
+ title_text="Analysis Distribution",
77
+ )
78
+
79
+ # Save the plot to a bytes buffer
80
+ buf = io.BytesIO()
81
+ fig.write_image(buf, format='png')
82
+ buf.seek(0)
83
+
84
+ return buf
85
 
86
  def process_csv(file):
87
  """
88
+ Process posts from CSV file with enhanced analysis and visualizations
89
  """
90
  try:
91
  # Read the input CSV file
92
  df = pd.read_csv(file.name)
93
 
94
+ # Verify required columns
95
  if 'post_id' not in df.columns or 'text' not in df.columns:
96
  return None, "Error: CSV must contain 'post_id' and 'text' columns"
97
 
98
+ # Perform comprehensive analysis
99
+ analysis_results = []
100
+
101
+ for _, row in df.iterrows():
102
+ text = row['text']
103
+
104
+ # Basic sentiment analysis
105
+ sentiment, sentiment_score = classify_text(text, SENTIMENT_LABELS, sentiment_classifier)
106
 
107
+ # Detect critical issues
108
+ critical_issues = detect_critical_issues(text)
 
109
 
110
+ # Determine urgency and brand impact
111
+ urgency = determine_urgency(text, sentiment, critical_issues)
112
+ brand_impact = analyze_brand_impact(text, sentiment, critical_issues)
113
+
114
+ # Store results
115
+ analysis_results.append({
116
+ 'post_id': row['post_id'],
117
+ 'text': text,
118
+ 'sentiment': sentiment,
119
+ 'sentiment_confidence': round(sentiment_score, 3),
120
+ 'urgency': urgency,
121
+ 'brand_impact': brand_impact,
122
+ 'critical_issues': '|'.join(critical_issues) if critical_issues else 'none',
123
+ })
124
+
125
+ # Create results DataFrame
126
+ results_df = pd.DataFrame(analysis_results)
127
+
128
+ # Generate recommendations
129
+ results_df['recommendations'] = results_df.apply(generate_recommendations, axis=1)
130
+
131
+ # Add analysis timestamp
132
+ timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
133
+ output_file = f"social_media_analysis_{timestamp}.csv"
134
+
135
+ # Save results
136
+ results_df.to_csv(output_file, index=False)
137
+
138
+ # Generate pie charts
139
+ charts_buf = create_pie_charts(results_df)
140
+ charts_file = f"analysis_charts_{timestamp}.png"
141
+ with open(charts_file, 'wb') as f:
142
+ f.write(charts_buf.getvalue())
143
+
144
+ # Generate summary statistics
145
+ total_posts = len(results_df)
146
+ critical_posts = len(results_df[results_df['urgency'] == 'critical'])
147
+ negative_sentiment = len(results_df[results_df['sentiment'] == 'negative'])
148
+ severe_impact = len(results_df[results_df['brand_impact'] == 'severe'])
149
+
150
+ summary = f"""
151
+ Analysis Summary:
152
+ ----------------
153
+ Total Posts Analyzed: {total_posts}
154
+ Critical Issues Requiring Immediate Attention: {critical_posts}
155
+ Negative Sentiment Posts: {negative_sentiment}
156
+ Severe Brand Impact Posts: {severe_impact}
157
+
158
+ The detailed analysis has been saved to: {output_file}
159
+ Charts have been saved to: {charts_file}
160
+ """
161
+
162
+ return [output_file, charts_file], summary
163
 
164
  except Exception as e:
165
+ return [None, None], f"Error processing CSV: {str(e)}"
166
 
167
+ # [Previous example file creation function remains the same]
168
  def create_example_file():
169
  """
170
  Create an example CSV file for demonstration
171
  """
172
  example_data = {
173
+ 'post_id': range(1, 6),
174
  'text': [
175
+ "I absolutely love your product! Best purchase ever!",
176
+ "My account appears to have been hacked and unauthorized charges made. Need immediate assistance!",
177
+ "This service is terrible, never using it again. Going to share my experience on social media.",
178
+ "Your app is constantly crashing. Please fix this issue.",
179
+ "Concerned about potential compliance violations in your recent policy update."
180
  ]
181
  }
182
  df = pd.DataFrame(example_data)
 
197
  )
198
  ],
199
  outputs=[
200
+ gr.File(label="Download Analysis Files", file_count="multiple"),
201
+ gr.Textbox(label="Analysis Summary", max_lines=10)
202
  ],
203
+ title="Enhanced Social Media Analysis System",
204
  description="""
205
+ Comprehensive social media post analyzer that provides:
206
+ - Sentiment Analysis
207
+ - Urgency Classification
208
+ - Brand Impact Assessment
209
+ - Critical Issue Detection
210
+ - Actionable Recommendations
211
+ - Visual Analytics
212
 
213
  Input CSV format:
214
  - Required columns: 'post_id', 'text'
215
  - Each row should contain a unique post ID and the post text
 
 
 
 
 
216
  """,
217
  examples=[
218
+ [example_file]
219
  ]
220
  )
221
 
222
  if __name__ == "__main__":
 
223
  try:
224
  iface.launch()
225
  finally:
requirements.txt CHANGED
@@ -1,5 +1,8 @@
1
- transformers>=4.46.2
2
  gradio>=5.5.0
 
 
3
  pandas>=2.2.3
 
 
4
  tensorflow
5
  tf-keras
 
 
1
  gradio>=5.5.0
2
+ transformers>=4.46.2
3
+ torch
4
  pandas>=2.2.3
5
+ plotly
6
+ kaleido
7
  tensorflow
8
  tf-keras