import gradio as gr from transformers import pipeline import pandas as pd import numpy as np import os from datetime import datetime import plotly.express as px import plotly.graph_objects as go from plotly.subplots import make_subplots # Initialize the classification pipelines sentiment_classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli") # Define various classification labels SENTIMENT_LABELS = ["positive", "negative", "neutral"] URGENCY_LABELS = ["critical", "high", "medium", "low"] BRAND_IMPACT_LABELS = ["severe", "moderate", "minimal"] ISSUE_CATEGORIES = ["product", "service", "security", "fraud", "compliance", "technical", "billing", "general"] # Keywords for critical issue detection CRITICAL_KEYWORDS = { 'security': ['hack', 'breach', 'leaked', 'stolen', 'unauthorized', 'privacy'], 'fraud': ['scam', 'fraud', 'fake', 'unauthorized charge', 'stolen'], 'compliance': ['lawsuit', 'legal', 'regulation', 'complaint', 'policy violation'], 'sensitive': ['racist', 'discrimination', 'harassment', 'abuse', 'offensive'] } def create_charts(df): """ Create visualization charts using Plotly """ # Create subplot figure fig = make_subplots( rows=2, cols=2, subplot_titles=("Urgency Distribution", "Sentiment Analysis", "Brand Impact Assessment", "Critical Issues Breakdown"), specs=[[{"type": "pie"}, {"type": "pie"}], [{"type": "pie"}, {"type": "bar"}]] ) # 1. Urgency Distribution Pie Chart urgency_counts = df['urgency'].value_counts() fig.add_trace( go.Pie(labels=urgency_counts.index, values=urgency_counts.values, marker=dict(colors=['#ff0000', '#ff6666', '#ffcccc', '#ffe6e6'])), row=1, col=1 ) # 2. Sentiment Analysis Pie Chart sentiment_counts = df['sentiment'].value_counts() fig.add_trace( go.Pie(labels=sentiment_counts.index, values=sentiment_counts.values, marker=dict(colors=['#00cc00', '#ff0000', '#cccccc'])), row=1, col=2 ) # 3. Brand Impact Pie Chart impact_counts = df['brand_impact'].value_counts() fig.add_trace( go.Pie(labels=impact_counts.index, values=impact_counts.values, marker=dict(colors=['#ff0000', '#ff9933', '#ffcc00'])), row=2, col=1 ) # 4. Critical Issues Bar Chart critical_issues = df['critical_issues'].str.split('|', expand=True).stack() critical_counts = critical_issues[critical_issues != 'none'].value_counts() fig.add_trace( go.Bar(x=critical_counts.index, y=critical_counts.values, marker_color='#ff0000'), row=2, col=2 ) # Update layout fig.update_layout( height=800, showlegend=True, title_text="Social Media Analysis Dashboard", title_x=0.5, title_font_size=20, paper_bgcolor='rgba(0,0,0,0)', plot_bgcolor='rgba(0,0,0,0)' ) # Save the figure timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") chart_file = f"analysis_dashboard_{timestamp}.html" fig.write_html(chart_file) return chart_file def classify_text(text, labels, classifier): """ Perform zero-shot classification on text """ result = classifier(text, labels) return result['labels'][0], result['scores'][0] def detect_critical_issues(text): """ Detect critical issues based on keywords """ text_lower = text.lower() issues = [] for category, keywords in CRITICAL_KEYWORDS.items(): if any(keyword in text_lower for keyword in keywords): issues.append(category) return issues def determine_urgency(text, sentiment, critical_issues): """ Determine urgency level based on content, sentiment, and critical issues """ if critical_issues: return "critical" elif "!" in text or "?" in text or any(word in text.lower() for word in ['urgent', 'asap', 'immediately']): return "high" elif sentiment == "negative": return "medium" else: return "low" def analyze_brand_impact(text, sentiment, critical_issues): """ Analyze potential brand impact """ if critical_issues or sentiment == "negative" and ("share" in text.lower() or "viral" in text.lower()): return "severe" elif sentiment == "negative": return "moderate" else: return "minimal" def generate_recommendations(row): """ Generate actionable recommendations based on analysis """ recommendations = [] if row['urgency'] == 'critical': recommendations.append("🚨 IMMEDIATE ESCALATION REQUIRED - Route to crisis management team") if 'security' in row['critical_issues']: recommendations.append("🔒 Engage security team for immediate investigation") elif 'fraud' in row['critical_issues']: recommendations.append("⚠️ Route to fraud prevention team for investigation") elif 'compliance' in row['critical_issues']: recommendations.append("📜 Escalate to legal/compliance team for review") if row['brand_impact'] == 'severe': recommendations.append("📢 Engage PR team for reputation management strategy") if row['sentiment'] == 'negative': recommendations.append("🔥 Priority customer outreach needed for resolution") return ' | '.join(recommendations) if recommendations else "✅ Standard response protocol" def process_csv(file): """ Process posts from CSV file with enhanced analysis """ try: # Read the input CSV file df = pd.read_csv(file.name) # Verify required columns if 'post_id' not in df.columns or 'text' not in df.columns: return None, None, "Error: CSV must contain 'post_id' and 'text' columns" # Perform comprehensive analysis analysis_results = [] for _, row in df.iterrows(): text = row['text'] # Basic sentiment analysis sentiment, sentiment_score = classify_text(text, SENTIMENT_LABELS, sentiment_classifier) # Detect critical issues critical_issues = detect_critical_issues(text) # Determine urgency and brand impact urgency = determine_urgency(text, sentiment, critical_issues) brand_impact = analyze_brand_impact(text, sentiment, critical_issues) # Store results analysis_results.append({ 'post_id': row['post_id'], 'text': text, 'sentiment': sentiment, 'sentiment_confidence': round(sentiment_score, 3), 'urgency': urgency, 'brand_impact': brand_impact, 'critical_issues': '|'.join(critical_issues) if critical_issues else 'none', }) # Create results DataFrame results_df = pd.DataFrame(analysis_results) # Generate recommendations results_df['recommendations'] = results_df.apply(generate_recommendations, axis=1) # Create visualization dashboard dashboard_file = create_charts(results_df) # Add analysis timestamp timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") output_file = f"social_media_analysis_{timestamp}.csv" # Save results results_df.to_csv(output_file, index=False) # Generate summary statistics total_posts = len(results_df) critical_posts = len(results_df[results_df['urgency'] == 'critical']) negative_sentiment = len(results_df[results_df['sentiment'] == 'negative']) severe_impact = len(results_df[results_df['brand_impact'] == 'severe']) summary = f""" 🎯 Real-Time Social Media Intelligence Report ========================================== 📊 Key Metrics: ------------- Total Posts Analyzed: {total_posts} Critical Issues Requiring Immediate Attention: {critical_posts} Negative Sentiment Posts: {negative_sentiment} Severe Brand Impact Posts: {severe_impact} ⚡ Quick Actions Required: ---------------------- - {critical_posts} posts need immediate escalation - {severe_impact} posts require PR team intervention - {negative_sentiment} posts need customer satisfaction follow-up 💡 AI-Powered Analysis Complete: ---------------------------- Detailed analysis saved to: {output_file} Interactive dashboard saved to: {dashboard_file} """ return output_file, dashboard_file, summary except Exception as e: return None, None, f"Error processing CSV: {str(e)}" # Create example CSV file with more diverse cases def create_example_file(): """ Create an example CSV file for demonstration """ example_data = { 'post_id': range(1, 11), 'text': [ "Just experienced a major security breach! My account was hacked and sensitive data leaked. This is unacceptable! #cybersecurity #breach", "Thank you for the amazing customer service! The team went above and beyond to help me. Truly impressed! 🌟", "Your latest app update is constantly crashing. Can't access my account for 3 days now. Fix this ASAP!", "Noticed some suspicious charges on my account. Possible fraud? Need immediate assistance! 🚨", "Love the new features you've added! Makes my work so much easier. Keep innovating! 👏", "Planning to file a legal complaint due to repeated policy violations. This needs attention.", "System down again? This is the third time this week. Considering switching to your competitor.", "Your product has completely transformed our business operations. Best investment ever! 🚀", "Experiencing discrimination from your staff. This is unacceptable and I'm reporting it.", "Warning to others: Potential scam detected in recent transactions. Be careful!" ] } df = pd.DataFrame(example_data) example_file = "example_input.csv" df.to_csv(example_file, index=False) return example_file # Create the example file example_file = create_example_file() # Create Gradio interface with custom theme theme = gr.themes.Base( primary_hue="red", secondary_hue="red", ) css = """ .gradio-container { background: linear-gradient(to bottom right, #ffffff, #ffecec); } """ # Create Gradio interface iface = gr.Interface( fn=process_csv, inputs=[ gr.File( label="Upload CSV File 📁", file_types=[".csv"] ) ], outputs=[ gr.File(label="Download Detailed Analysis Report 📊"), gr.File(label="Download Interactive Dashboard 📈"), gr.Textbox(label="Real-Time Analysis Summary 📱", max_lines=15) ], title="🚀 NoCode Ninjas: AI-Powered Social Media Intelligence Platform", description=""" ### Enterprise-Grade Social Media Analytics with Advanced AI Transform your social media monitoring with our cutting-edge AI analysis platform: 🎯 **Real-Time Sentiment Analysis** 🔍 **Urgent Issue Detection** ⚡ **Instant Crisis Alerts** 📊 **Brand Impact Assessment** 🤖 **AI-Driven Recommendations** *Trusted by leading brands for proactive social media management and crisis prevention.* """, examples=[ [example_file] ], theme=theme, css=css ) if __name__ == "__main__": try: iface.launch() finally: if os.path.exists(example_file): os.remove(example_file)