Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import os | |
| import torch | |
| from pathlib import Path | |
| from model import create_effnetb3_model | |
| from timeit import default_timer as timer | |
| from typing import Tuple, Dict | |
| class_names = ['Banh beo', 'Banh bot loc', 'Banh can', 'Banh canh', 'Banh chung','Banh cuon', 'Banh duc', 'Banh gio','Banh khot', | |
| 'Banh mi','Banh pia', 'Banh tet', 'Banh trang nuong', 'Banh xeo', 'Bun bo Hue', 'Bun dau mam tom','Bun mam', 'Bun rieu', 'Bun thit nuong', | |
| 'Ca kho to', 'Canh chua', 'Cao lau', 'Chao long', 'Com tam', 'Goi cuon', 'Hu tieu', 'Mi quang', 'Nem chua', 'Pho', 'Xoi xeo'] | |
| effnetb3, effnetb3_transforms = create_effnetb3_model(num_classes=30) | |
| effnetb3.load_state_dict( | |
| torch.load( | |
| f= "./models/pretrained_effnetb3_vietnamese_food.pth", | |
| map_location=torch.device("cpu") | |
| ) | |
| ) | |
| def predict(img) -> Tuple[Dict, float]: | |
| start_time = timer() | |
| img = effnetb3_transforms(img).unsqueeze(0) | |
| effnetb3.eval() | |
| with torch.inference_mode(): | |
| pred_probs = torch.softmax(effnetb3(img), dim = 1) | |
| pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))} | |
| pred_time = round(timer() - start_time, 4) | |
| return pred_labels_and_probs, pred_time | |
| title = "Vietnamese food vision" | |
| description = "An EfficientNetB3 feature extractor computer vision model" | |
| example_list = [["examples/" + example] for example in os.listdir("examples")] | |
| demo = gr.Interface(fn=predict, | |
| inputs=gr.Image(type="pil"), | |
| outputs=[gr.Label(num_top_classes=3, label="Prediction"), | |
| gr.Number(label="Prediction time (s)")], | |
| examples=example_list, | |
| title=title, | |
| description=description) | |
| demo.launch(share=True) | |