Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# !pip install ultralytics
|
| 2 |
+
from ultralytics import ASSETS, YOLO, RTDETR
|
| 3 |
+
import gradio as gr
|
| 4 |
+
from huggingface_hub import snapshot_download
|
| 5 |
+
model_dir = snapshot_download("omarelsayeed/DETR-ARABIC-DOCUMENT-LAYOUT-ANALYSIS") + "/Model.pt"
|
| 6 |
+
model = RTDETR(model_dir)
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def predict_image(img, conf_threshold, iou_threshold):
|
| 10 |
+
"""Predicts objects in an image using a YOLO11 model with adjustable confidence and IOU thresholds."""
|
| 11 |
+
results = model.predict(
|
| 12 |
+
source=img,
|
| 13 |
+
conf=conf_threshold,
|
| 14 |
+
iou=iou_threshold,
|
| 15 |
+
show_labels=True,
|
| 16 |
+
show_conf=True,
|
| 17 |
+
imgsz=640,
|
| 18 |
+
)
|
| 19 |
+
|
| 20 |
+
for r in results:
|
| 21 |
+
im_array = r.plot()
|
| 22 |
+
im = Image.fromarray(im_array[..., ::-1])
|
| 23 |
+
|
| 24 |
+
return im
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
iface = gr.Interface(
|
| 28 |
+
fn=predict_image,
|
| 29 |
+
inputs=[
|
| 30 |
+
gr.Image(type="pil", label="Upload Image"),
|
| 31 |
+
gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence threshold"),
|
| 32 |
+
gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU threshold"),
|
| 33 |
+
],
|
| 34 |
+
outputs=gr.Image(type="pil", label="Result"),
|
| 35 |
+
title="Ultralytics Gradio",
|
| 36 |
+
description="Upload images for inference. The Ultralytics YOLO11n model is used by default.",
|
| 37 |
+
examples=[
|
| 38 |
+
[ASSETS / "bus.jpg", 0.25, 0.45],
|
| 39 |
+
[ASSETS / "zidane.jpg", 0.25, 0.45],
|
| 40 |
+
],
|
| 41 |
+
)
|
| 42 |
+
|
| 43 |
+
if __name__ == "__main__":
|
| 44 |
+
iface.launch(share = True)
|