import gradio as gr from fastai.vision.all import * def classify_img(img): pred , idx , probs = learn.predict(img) return dict(zip(categories , map(float , probs))) import pathlib plt = platform.system() if plt == 'Linux': pathlib.WindowsPath = pathlib.PosixPath learn = load_learner('bears_model.pkl') categories = ( 'black bear','grizzly bear' , 'teddy bear') image = gr.inputs.Image(shape=(194,194)) label = gr.outputs.Label() examples = [ 'teddy_bear.jpg' , 'grizzly_bear.jpg' , 'black_bear.jpg' ] intf = gr.Interface(fn = classify_img , inputs = image , outputs = label , examples = examples) intf.launch(inline = False)