Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import random | |
| import uuid | |
| import json | |
| import time | |
| import asyncio | |
| import re | |
| import tempfile | |
| import ast | |
| import html | |
| from threading import Thread | |
| from typing import Iterable, Optional | |
| import gradio as gr | |
| import torch | |
| import numpy as np | |
| from PIL import Image, ImageDraw, ImageOps | |
| import requests | |
| # Import spaces if available, otherwise mock it | |
| try: | |
| import spaces | |
| except ImportError: | |
| class spaces: | |
| def GPU(func): | |
| def wrapper(*args, **kwargs): | |
| return func(*args, **kwargs) | |
| return wrapper | |
| from transformers import ( | |
| AutoModel, | |
| AutoModelForCausalLM, | |
| AutoTokenizer, | |
| AutoProcessor, | |
| TextIteratorStreamer, | |
| HunYuanVLForConditionalGeneration, | |
| Qwen2_5_VLForConditionalGeneration, | |
| ) | |
| from gradio.themes import Soft | |
| from gradio.themes.utils import colors, fonts, sizes | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| print(f"✅ Using device: {device}") | |
| print("CUDA_VISIBLE_DEVICES=", os.environ.get("CUDA_VISIBLE_DEVICES")) | |
| print("torch.__version__ =", torch.__version__) | |
| print("torch.version.cuda =", torch.version.cuda) | |
| print("cuda available:", torch.cuda.is_available()) | |
| print("cuda device count:", torch.cuda.device_count()) | |
| if torch.cuda.is_available(): | |
| print("current device:", torch.cuda.current_device()) | |
| print("device name:", torch.cuda.get_device_name(torch.cuda.current_device())) | |
| # --- Theme Definition --- | |
| colors.steel_blue = colors.Color( | |
| name="steel_blue", | |
| c50="#EBF3F8", | |
| c100="#D3E5F0", | |
| c200="#A8CCE1", | |
| c300="#7DB3D2", | |
| c400="#529AC3", | |
| c500="#4682B4", | |
| c600="#3E72A0", | |
| c700="#36638C", | |
| c800="#2E5378", | |
| c900="#264364", | |
| c950="#1E3450", | |
| ) | |
| class SteelBlueTheme(Soft): | |
| def __init__( | |
| self, | |
| *, | |
| primary_hue: colors.Color | str = colors.gray, | |
| secondary_hue: colors.Color | str = colors.steel_blue, | |
| neutral_hue: colors.Color | str = colors.slate, | |
| text_size: sizes.Size | str = sizes.text_lg, | |
| font: fonts.Font | str | Iterable[fonts.Font | str] = ( | |
| fonts.GoogleFont("Outfit"), "Arial", "sans-serif", | |
| ), | |
| font_mono: fonts.Font | str | Iterable[fonts.Font | str] = ( | |
| fonts.GoogleFont("IBM Plex Mono"), "ui-monospace", "monospace", | |
| ), | |
| ): | |
| super().__init__( | |
| primary_hue=primary_hue, | |
| secondary_hue=secondary_hue, | |
| neutral_hue=neutral_hue, | |
| text_size=text_size, | |
| font=font, | |
| font_mono=font_mono, | |
| ) | |
| super().set( | |
| background_fill_primary="*primary_50", | |
| background_fill_primary_dark="*primary_900", | |
| body_background_fill="linear-gradient(135deg, *primary_200, *primary_100)", | |
| body_background_fill_dark="linear-gradient(135deg, *primary_900, *primary_800)", | |
| button_primary_text_color="white", | |
| button_primary_text_color_hover="white", | |
| button_primary_background_fill="linear-gradient(90deg, *secondary_500, *secondary_600)", | |
| button_primary_background_fill_hover="linear-gradient(90deg, *secondary_600, *secondary_700)", | |
| button_primary_background_fill_dark="linear-gradient(90deg, *secondary_600, *secondary_700)", | |
| button_primary_background_fill_hover_dark="linear-gradient(90deg, *secondary_500, *secondary_600)", | |
| slider_color="*secondary_500", | |
| slider_color_dark="*secondary_600", | |
| block_title_text_weight="600", | |
| block_border_width="3px", | |
| block_shadow="*shadow_drop_lg", | |
| button_primary_shadow="*shadow_drop_lg", | |
| button_large_padding="11px", | |
| color_accent_soft="*primary_100", | |
| block_label_background_fill="*primary_200", | |
| ) | |
| steel_blue_theme = SteelBlueTheme() | |
| css = """ | |
| #main-title h1 { font-size: 2.3em !important; } | |
| #output-title h2 { font-size: 2.1em !important; } | |
| """ | |
| # --- Model Loading --- | |
| # 1. DeepSeek-OCR | |
| MODEL_DS = "prithivMLmods/DeepSeek-OCR-Latest-BF16.I64" # - (deepseek-ai/DeepSeek-OCR) | |
| print(f"Loading {MODEL_DS}...") | |
| tokenizer_ds = AutoTokenizer.from_pretrained(MODEL_DS, trust_remote_code=True) | |
| model_ds = AutoModel.from_pretrained( | |
| MODEL_DS, trust_remote_code=True, use_safetensors=True | |
| ).to(device).eval() | |
| if device.type == 'cuda': | |
| model_ds = model_ds.to(torch.bfloat16) | |
| # 2. Dots.OCR | |
| MODEL_DOTS = "prithivMLmods/Dots.OCR-Latest-BF16" # - (rednote-hilab/dots.ocr) | |
| print(f"Loading {MODEL_DOTS}...") | |
| processor_dots = AutoProcessor.from_pretrained(MODEL_DOTS, trust_remote_code=True) | |
| model_dots = AutoModelForCausalLM.from_pretrained( | |
| MODEL_DOTS, | |
| trust_remote_code=True, | |
| torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32, | |
| device_map="auto" | |
| ).eval() | |
| # 3. HunyuanOCR | |
| MODEL_HUNYUAN = "tencent/HunyuanOCR" | |
| print(f"Loading {MODEL_HUNYUAN}...") | |
| processor_hy = AutoProcessor.from_pretrained(MODEL_HUNYUAN, use_fast=False) | |
| model_hy = HunYuanVLForConditionalGeneration.from_pretrained( | |
| MODEL_HUNYUAN, | |
| attn_implementation="eager", # Use eager to avoid SDPA issues if old torch | |
| torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32, | |
| device_map="auto" | |
| ).eval() | |
| # 4. Nanonets-OCR2-3B | |
| MODEL_ID_X = "nanonets/Nanonets-OCR2-3B" | |
| print(f"Loading {MODEL_ID_X}...") | |
| processor_x = AutoProcessor.from_pretrained(MODEL_ID_X, trust_remote_code=True) | |
| model_x = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
| MODEL_ID_X, | |
| trust_remote_code=True, | |
| torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32, | |
| device_map="auto" # or .to(device) | |
| ).eval() | |
| print("✅ All models loaded successfully.") | |
| # --- Helper Functions --- | |
| def clean_repeated_substrings(text): | |
| """Clean repeated substrings in text (for Hunyuan)""" | |
| n = len(text) | |
| if n < 8000: | |
| return text | |
| for length in range(2, n // 10 + 1): | |
| candidate = text[-length:] | |
| count = 0 | |
| i = n - length | |
| while i >= 0 and text[i:i + length] == candidate: | |
| count += 1 | |
| i -= length | |
| if count >= 10: | |
| return text[:n - length * (count - 1)] | |
| return text | |
| def find_result_image(path): | |
| for filename in os.listdir(path): | |
| if "grounding" in filename or "result" in filename: | |
| try: | |
| return Image.open(os.path.join(path, filename)) | |
| except Exception as e: | |
| print(f"Error opening result image: {e}") | |
| return None | |
| # --- Main Inference Logic --- | |
| def run_model( | |
| model_choice, | |
| image, | |
| ds_task_type, | |
| ds_model_size, | |
| ds_ref_text, | |
| custom_prompt, | |
| max_new_tokens, | |
| temperature, | |
| top_p, | |
| top_k | |
| ): | |
| if image is None: | |
| yield "Please upload an image.", None | |
| return | |
| # === DeepSeek-OCR Logic === | |
| if model_choice == "DeepSeek-OCR-Latest-BF16.I64": | |
| # Prepare Prompt based on Task | |
| if ds_task_type == "Free OCR": | |
| prompt = "<image>\nFree OCR." | |
| elif ds_task_type == "Convert to Markdown": | |
| prompt = "<image>\n<|grounding|>Convert the document to markdown." | |
| elif ds_task_type == "Parse Figure": | |
| prompt = "<image>\nParse the figure." | |
| elif ds_task_type == "Locate Object by Reference": | |
| if not ds_ref_text or ds_ref_text.strip() == "": | |
| yield "Error: For 'Locate', you must provide Reference Text.", None | |
| return | |
| prompt = f"<image>\nLocate <|ref|>{ds_ref_text.strip()}<|/ref|> in the image." | |
| else: | |
| prompt = "<image>\nFree OCR." | |
| with tempfile.TemporaryDirectory() as output_path: | |
| temp_image_path = os.path.join(output_path, "temp_image.png") | |
| image.save(temp_image_path) | |
| # Size config | |
| size_configs = { | |
| "Tiny": {"base_size": 512, "image_size": 512, "crop_mode": False}, | |
| "Small": {"base_size": 640, "image_size": 640, "crop_mode": False}, | |
| "Base": {"base_size": 1024, "image_size": 1024, "crop_mode": False}, | |
| "Large": {"base_size": 1280, "image_size": 1280, "crop_mode": False}, | |
| "Gundam (Recommended)": {"base_size": 1024, "image_size": 640, "crop_mode": True}, | |
| } | |
| config = size_configs.get(ds_model_size, size_configs["Gundam (Recommended)"]) | |
| text_result = model_ds.infer( | |
| tokenizer_ds, | |
| prompt=prompt, | |
| image_file=temp_image_path, | |
| output_path=output_path, | |
| base_size=config["base_size"], | |
| image_size=config["image_size"], | |
| crop_mode=config["crop_mode"], | |
| save_results=True, | |
| test_compress=True, | |
| eval_mode=True, | |
| ) | |
| # Draw Bounding Boxes if present | |
| result_image_pil = None | |
| pattern = re.compile(r"<\|det\|>\[\[(\d+),\s*(\d+),\s*(\d+),\s*(\d+)\]\]<\|/det\|>") | |
| matches = list(pattern.finditer(text_result)) | |
| if matches: | |
| image_with_bboxes = image.copy() | |
| draw = ImageDraw.Draw(image_with_bboxes) | |
| w, h = image.size | |
| for match in matches: | |
| coords_norm = [int(c) for c in match.groups()] | |
| x1 = int(coords_norm[0] / 1000 * w) | |
| y1 = int(coords_norm[1] / 1000 * h) | |
| x2 = int(coords_norm[2] / 1000 * w) | |
| y2 = int(coords_norm[3] / 1000 * h) | |
| draw.rectangle([x1, y1, x2, y2], outline="red", width=3) | |
| result_image_pil = image_with_bboxes | |
| else: | |
| result_image_pil = find_result_image(output_path) | |
| yield text_result, result_image_pil | |
| # === Dots.OCR Logic === | |
| elif model_choice == "Dots.OCR-Latest-BF16": | |
| query = custom_prompt if custom_prompt else "Extract all text from this image." | |
| messages = [{ | |
| "role": "user", | |
| "content": [ | |
| {"type": "image"}, | |
| {"type": "text", "text": query}, | |
| ] | |
| }] | |
| prompt_full = processor_dots.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
| inputs = processor_dots(text=[prompt_full], images=[image], return_tensors="pt", padding=True).to(model_dots.device) | |
| streamer = TextIteratorStreamer(processor_dots, skip_prompt=True, skip_special_tokens=True) | |
| generation_kwargs = { | |
| **inputs, | |
| "streamer": streamer, | |
| "max_new_tokens": max_new_tokens, | |
| "do_sample": True, | |
| "temperature": temperature, | |
| "top_p": top_p, | |
| "top_k": int(top_k), | |
| } | |
| thread = Thread(target=model_dots.generate, kwargs=generation_kwargs) | |
| thread.start() | |
| buffer = "" | |
| for new_text in streamer: | |
| buffer += new_text.replace("<|im_end|>", "") | |
| yield buffer, None | |
| # === HunyuanOCR Logic === | |
| elif model_choice == "HunyuanOCR": | |
| query = custom_prompt if custom_prompt else "检测并识别图片中的文字,将文本坐标格式化输出。" | |
| # Hunyuan template structure | |
| messages = [ | |
| {"role": "system", "content": ""}, | |
| { | |
| "role": "user", | |
| "content": [ | |
| {"type": "image", "image": image}, | |
| {"type": "text", "text": query}, | |
| ], | |
| } | |
| ] | |
| # Note: Hunyuan processor expects specific handling | |
| texts = [processor_hy.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)] | |
| inputs = processor_hy(text=texts, images=image, padding=True, return_tensors="pt") | |
| inputs = inputs.to(model_hy.device) | |
| # Generate (Not streaming for Hunyuan usually) | |
| with torch.no_grad(): | |
| generated_ids = model_hy.generate( | |
| **inputs, | |
| max_new_tokens=max_new_tokens, | |
| do_sample=False | |
| ) | |
| input_len = inputs.input_ids.shape[1] | |
| generated_ids_trimmed = generated_ids[:, input_len:] | |
| output_text = processor_hy.batch_decode(generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] | |
| final_text = clean_repeated_substrings(output_text) | |
| yield final_text, None | |
| # === Nanonets-OCR2-3B Logic === | |
| elif model_choice == "Nanonets-OCR2-3B": | |
| query = custom_prompt if custom_prompt else "Extract the text from this image." | |
| messages = [ | |
| { | |
| "role": "user", | |
| "content": [ | |
| {"type": "image", "image": image}, | |
| {"type": "text", "text": query}, | |
| ], | |
| } | |
| ] | |
| # Prepare inputs for Qwen2.5-VL based architecture | |
| text = processor_x.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
| inputs = processor_x( | |
| text=[text], | |
| images=[image], | |
| padding=True, | |
| return_tensors="pt", | |
| ).to(model_x.device) | |
| streamer = TextIteratorStreamer(processor_x, skip_prompt=True, skip_special_tokens=True) | |
| generation_kwargs = { | |
| **inputs, | |
| "streamer": streamer, | |
| "max_new_tokens": max_new_tokens, | |
| "do_sample": True, | |
| "temperature": temperature, | |
| "top_p": top_p, | |
| "top_k": int(top_k), | |
| } | |
| thread = Thread(target=model_x.generate, kwargs=generation_kwargs) | |
| thread.start() | |
| buffer = "" | |
| for new_text in streamer: | |
| buffer += new_text.replace("<|im_end|>", "") | |
| yield buffer, None | |
| image_examples = [ | |
| ["examples/1.jpg"], | |
| ["examples/2.jpg"], | |
| ["examples/3.jpg"], | |
| ] | |
| with gr.Blocks(css=css, theme=steel_blue_theme) as demo: | |
| gr.Markdown("# **Super-OCRs-Demo**", elem_id="main-title") | |
| gr.Markdown("Compare DeepSeek-OCR, Dots.OCR, HunyuanOCR, and Nanonets-OCR2-3B in one space.") | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| # Global Inputs | |
| model_choice = gr.Dropdown( | |
| choices=["HunyuanOCR", "DeepSeek-OCR-Latest-BF16.I64", "Dots.OCR-Latest-BF16", "Nanonets-OCR2-3B"], | |
| label="Select Model", | |
| value="DeepSeek-OCR-Latest-BF16.I64" | |
| ) | |
| image_input = gr.Image(type="pil", label="Upload Image", sources=["upload", "clipboard"], height=350) | |
| # DeepSeek Specific Options | |
| with gr.Group(visible=True) as ds_group: | |
| ds_model_size = gr.Dropdown( | |
| choices=["Tiny", "Small", "Base", "Large", "Gundam (Recommended)"], | |
| value="Large", label="DeepSeek Resolution" | |
| ) | |
| ds_task_type = gr.Dropdown( | |
| choices=["Free OCR", "Convert to Markdown", "Parse Figure", "Locate Object by Reference"], | |
| value="Convert to Markdown", label="Task Type" | |
| ) | |
| ds_ref_text = gr.Textbox(label="Reference Text (for 'Locate' task only)", placeholder="e.g., the title, red car...", visible=False) | |
| # General Prompt (for Dots/Hunyuan/Nanonets) | |
| with gr.Group(visible=False) as prompt_group: | |
| custom_prompt = gr.Textbox(label="Custom Query / Prompt", placeholder="Extract text...", lines=2, value="Convert to Markdown precisely.") | |
| with gr.Accordion("Advanced Settings", open=False): | |
| max_new_tokens = gr.Slider(minimum=128, maximum=8192, value=2048, step=128, label="Max New Tokens") | |
| temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.2, step=0.1, label="Temperature") | |
| top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.9, step=0.05, label="Top P") | |
| top_k = gr.Slider(minimum=1, maximum=100, value=50, step=1, label="Top K") | |
| submit_btn = gr.Button("Perform OCR", variant="primary") | |
| gr.Examples(examples=image_examples, inputs=image_input) | |
| with gr.Column(scale=2): | |
| output_text = gr.Textbox(label="Recognized Text / Markdown", lines=15, show_copy_button=True) | |
| output_image = gr.Image(label="Visual Grounding Result (DeepSeek Only)", type="pil") | |
| def update_visibility(model): | |
| is_ds = (model == "DeepSeek-OCR-Latest-BF16.I64") | |
| return gr.Group(visible=is_ds), gr.Group(visible=not is_ds) | |
| def toggle_ref_text(task): | |
| return gr.Textbox(visible=(task == "Locate Object by Reference")) | |
| model_choice.change(fn=update_visibility, inputs=model_choice, outputs=[ds_group, prompt_group]) | |
| ds_task_type.change(fn=toggle_ref_text, inputs=ds_task_type, outputs=ds_ref_text) | |
| submit_btn.click( | |
| fn=run_model, | |
| inputs=[ | |
| model_choice, image_input, ds_task_type, ds_model_size, ds_ref_text, | |
| custom_prompt, max_new_tokens, temperature, top_p, top_k | |
| ], | |
| outputs=[output_text, output_image] | |
| ) | |
| if __name__ == "__main__": | |
| demo.queue(max_size=30).launch(mcp_server=True, ssr_mode=False, show_error=True) |