Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,850 Bytes
55fe803 62594be 55fe803 9d9e3d4 bd4c365 9d9e3d4 55fe803 9d9e3d4 55fe803 78bec1d e24aa73 55fe803 6c5fa74 3e7b179 9d9e3d4 fa46cad 9d9e3d4 8927bdc 9d9e3d4 06484eb fa757c4 06484eb fa757c4 06484eb 8927bdc 06484eb 8927bdc 06484eb 9d9e3d4 fa757c4 06484eb fa46cad 9d9e3d4 62594be 58264c9 9d9e3d4 06484eb 9d9e3d4 55fe803 9d9e3d4 58264c9 9d9e3d4 58264c9 9d9e3d4 8927bdc 9d9e3d4 55fe803 9d9e3d4 3ac4904 55fe803 3ac4904 55fe803 5812881 9d9e3d4 3ac4904 55fe803 8927bdc 9d9e3d4 8927bdc 06484eb 8927bdc 9d9e3d4 8927bdc 9d9e3d4 55fe803 9d9e3d4 55fe803 fa757c4 9d9e3d4 55fe803 9d9e3d4 58264c9 55fe803 9d9e3d4 55fe803 9d9e3d4 55fe803 9d9e3d4 55fe803 c96ee5c 9d9e3d4 556b962 58264c9 9d9e3d4 58264c9 55fe803 9d9e3d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
import torch
import spaces
import gradio as gr
from diffusers import DiffusionPipeline
import diffusers
import io
import sys
import logging
# ------------------------
# GLOBAL LOG BUFFER
# ------------------------
log_buffer = io.StringIO()
def log(msg):
print(msg)
log_buffer.write(msg + "\n")
# Enable diffusers debug logs
diffusers.utils.logging.set_verbosity_info()
log("Loading Z-Image-Turbo pipeline...")
pipe = DiffusionPipeline.from_pretrained(
"Tongyi-MAI/Z-Image-Turbo",
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=False,
attn_implementation="kernels-community/vllm-flash-attn3",
)
pipe.to("cuda")
#pipe.transformer.layers._repeated_blocks = ["ZImageTransformerBlock"] #spaces.aoti_blocks_load(pipe.transformer.layers, "zerogpu-aoti/Z-Image", variant="fa3")
# ------------------------
# ATTENTION + PIPE INFO
# ------------------------
def pipeline_debug_info(pipe):
info = []
info.append("=== PIPELINE DEBUG INFO ===")
try:
tr = pipe.transformer.config
info.append(f"Transformer Class: {pipe.transformer.__class__.__name__}")
# Z-Image-Turbo correct keys
info.append(f"Hidden dim: {tr.get('hidden_dim')}")
info.append(f"Attention heads: {tr.get('num_heads')}")
info.append(f"Depth (layers): {tr.get('depth')}")
info.append(f"Patch size: {tr.get('patch_size')}")
info.append(f"MLP ratio: {tr.get('mlp_ratio')}")
info.append(f"Attention backend: {tr.get('attn_implementation')}")
except Exception as e:
info.append(f"Transformer diagnostics failed: {e}")
# VAE info
try:
vae = pipe.vae.config
info.append(f"VAE latent channels: {vae.latent_channels}")
info.append(f"VAE scaling factor: {vae.scaling_factor}")
except Exception as e:
info.append(f"VAE diagnostics failed: {e}")
return "\n".join(info)
def latent_shape_info(h, w, pipe):
try:
c = pipe.vae.config.latent_channels
s = pipe.vae.config.scaling_factor
h_lat = int(h * s)
w_lat = int(w * s)
return f"Latent shape → ({c}, {h_lat}, {w_lat})"
except Exception as e:
return f"Latent shape calc failed: {e}"
# ------------------------
# IMAGE GENERATOR
# ------------------------
@spaces.GPU
def generate_image(prompt, height, width, num_inference_steps, seed, randomize_seed, num_images):
log_buffer.truncate(0)
log_buffer.seek(0)
log("=== NEW GENERATION REQUEST ===")
print(prompt)
log(f"Height: {height}, Width: {width}")
log(f"Inference Steps: {num_inference_steps}")
log(f"Num Images: {num_images}")
if randomize_seed:
seed = torch.randint(0, 2**32 - 1, (1,)).item()
log(f"Randomized Seed → {seed}")
else:
log(f"Seed: {seed}")
# Clamp images
num_images = min(max(1, int(num_images)), 3)
# Debug pipe info
log(pipeline_debug_info(pipe))
generator = torch.Generator("cuda").manual_seed(int(seed))
log("Running pipeline forward()...")
result = pipe(
prompt=prompt,
height=int(height),
width=int(width),
num_inference_steps=int(num_inference_steps),
guidance_scale=0.0,
generator=generator,
max_sequence_length=1024,
num_images_per_prompt=num_images,
output_type="pil",
)
# Correct latent diagnostics (Z-Image uses VAE + Transformer)
try:
log(f"VAE latent channels: {pipe.vae.config.latent_channels}")
log(f"VAE scaling factor: {pipe.vae.config.scaling_factor}")
log(f"Transformer latent size: {pipe.transformer.config.sample_size}")
log(latent_shape_info(height, width, pipe))
except Exception as e:
log(f"Latent diagnostics error: {e}")
log("Pipeline finished.")
log("Returning images...")
return result.images, seed, log_buffer.getvalue()
# ------------------------
# GRADIO UI
# ------------------------
examples = [
["Young Chinese woman in red Hanfu, intricate embroidery..."],
["A majestic dragon soaring through clouds at sunset..."],
["Cozy coffee shop interior, warm lighting, rain on windows..."],
["Astronaut riding a horse on Mars, cinematic lighting..."],
["Portrait of a wise old wizard..."],
]
with gr.Blocks(title="Z-Image-Turbo Multi Image Demo") as demo:
gr.Markdown("# 🎨 Z-Image-Turbo — Multi Image ")
with gr.Row():
with gr.Column(scale=1):
prompt = gr.Textbox(label="Prompt", lines=4)
with gr.Row():
height = gr.Slider(512, 2048, 1024, step=64, label="Height")
width = gr.Slider(512, 2048, 1024, step=64, label="Width")
num_images = gr.Slider(1, 3, 2, step=1, label="Number of Images")
num_inference_steps = gr.Slider(
1, 20, 9, step=1, label="Inference Steps",
info="9 steps = 8 DiT forward passes",
)
with gr.Row():
seed = gr.Number(label="Seed", value=42, precision=0)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=False)
generate_btn = gr.Button("🚀 Generate", variant="primary")
with gr.Column(scale=1):
output_images = gr.Gallery(label="Generated Images")
used_seed = gr.Number(label="Seed Used", interactive=False)
debug_log = gr.Textbox(
label="Debug Log Output",
lines=25,
interactive=False
)
gr.Examples(examples=examples, inputs=[prompt], cache_examples=False)
generate_btn.click(
fn=generate_image,
inputs=[prompt, height, width, num_inference_steps, seed, randomize_seed, num_images],
outputs=[output_images, used_seed, debug_log],
)
if __name__ == "__main__":
demo.launch()
|