Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,6 +2,8 @@ import torch
|
|
| 2 |
import spaces
|
| 3 |
import gradio as gr
|
| 4 |
from diffusers import DiffusionPipeline
|
|
|
|
|
|
|
| 5 |
|
| 6 |
# Load the pipeline once at startup
|
| 7 |
print("Loading Z-Image-Turbo pipeline...")
|
|
@@ -10,8 +12,23 @@ pipe = DiffusionPipeline.from_pretrained(
|
|
| 10 |
torch_dtype=torch.bfloat16,
|
| 11 |
low_cpu_mem_usage=False,
|
| 12 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
pipe.to("cuda")
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
@spaces.GPU
|
| 17 |
def generate_image(prompt, height, width, num_inference_steps, seed, randomize_seed):
|
|
|
|
| 2 |
import spaces
|
| 3 |
import gradio as gr
|
| 4 |
from diffusers import DiffusionPipeline
|
| 5 |
+
from optimization import optimize_pipeline_
|
| 6 |
+
|
| 7 |
|
| 8 |
# Load the pipeline once at startup
|
| 9 |
print("Loading Z-Image-Turbo pipeline...")
|
|
|
|
| 12 |
torch_dtype=torch.bfloat16,
|
| 13 |
low_cpu_mem_usage=False,
|
| 14 |
)
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
pipe.transformer.set_attention_backend(attention_backend)
|
| 18 |
+
|
| 19 |
+
if enable_compile:
|
| 20 |
+
print("Compiling transformer...")
|
| 21 |
+
pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune-no-cudagraphs", fullgraph=False)
|
| 22 |
+
|
| 23 |
pipe.to("cuda")
|
| 24 |
+
|
| 25 |
+
optimize_pipeline_(
|
| 26 |
+
pipe,
|
| 27 |
+
prompt="prompt",
|
| 28 |
+
num_inference_steps=1,
|
| 29 |
+
guidance_scale=0.0
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
|
| 33 |
@spaces.GPU
|
| 34 |
def generate_image(prompt, height, width, num_inference_steps, seed, randomize_seed):
|