Update app.py
Browse files
app.py
CHANGED
|
@@ -1,4 +1,11 @@
|
|
| 1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import numpy as np
|
| 3 |
import streamlit as st
|
| 4 |
from openai import OpenAI
|
|
@@ -14,59 +21,42 @@ load_dotenv()
|
|
| 14 |
# initialize the client
|
| 15 |
client = OpenAI(
|
| 16 |
base_url="https://api-inference.huggingface.co/v1",
|
| 17 |
-
api_key=os.environ.get('HUGGINGFACEHUB_API_TOKEN')#
|
| 18 |
-
)
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
"Meta-Llama-3-
|
| 26 |
-
"Mistral-
|
| 27 |
-
"
|
| 28 |
-
"
|
| 29 |
-
"
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
"
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
"
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
"
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
"Zephyr-7B":
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
[Zephyr 7B Gemma](https://huggingface.co/HuggingFaceH4/zephyr-7b-gemma-v0.1)\
|
| 52 |
-
is the third model in the series, and is a fine-tuned version of google/gemma-7b \
|
| 53 |
-
that was trained on on a mix of publicly available, synthetic datasets using Direct Preference Optimization (DPO)\n""",
|
| 54 |
-
'logo':'https://huggingface.co/HuggingFaceH4/zephyr-7b-gemma-v0.1/resolve/main/thumbnail.png'},
|
| 55 |
-
"Zephyr-7B-β":
|
| 56 |
-
{'description':"""The Zephyr model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \
|
| 57 |
-
\nFrom Huggingface: \n\
|
| 58 |
-
Zephyr is a series of language models that are trained to act as helpful assistants. \
|
| 59 |
-
[Zephyr-7B-β](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta)\
|
| 60 |
-
is the second model in the series, and is a fine-tuned version of mistralai/Mistral-7B-v0.1 \
|
| 61 |
-
that was trained on on a mix of publicly available, synthetic datasets using Direct Preference Optimization (DPO)\n""",
|
| 62 |
-
'logo':'https://huggingface.co/HuggingFaceH4/zephyr-7b-alpha/resolve/main/thumbnail.png'},
|
| 63 |
-
"Meta-Llama-3-8B":
|
| 64 |
-
{'description':"""The Llama (3) model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \
|
| 65 |
-
\nIt was created by the [**Meta's AI**](https://llama.meta.com/) team and has over **8 billion parameters.** \n""",
|
| 66 |
-
'logo':'Llama_logo.png'},
|
| 67 |
}
|
| 68 |
|
| 69 |
-
|
| 70 |
#Random dog images for error message
|
| 71 |
random_dog = ["0f476473-2d8b-415e-b944-483768418a95.jpg",
|
| 72 |
"1bd75c81-f1d7-4e55-9310-a27595fa8762.jpg",
|
|
@@ -101,7 +91,7 @@ models =[key for key in model_links.keys()]
|
|
| 101 |
# Create the sidebar with the dropdown for model selection
|
| 102 |
selected_model = st.sidebar.selectbox("Select Model", models)
|
| 103 |
|
| 104 |
-
#Create a temperature slider
|
| 105 |
temp_values = st.sidebar.slider('Select a temperature value', 0.0, 1.0, (0.5))
|
| 106 |
|
| 107 |
|
|
@@ -111,10 +101,8 @@ st.sidebar.button('Reset Chat', on_click=reset_conversation) #Reset button
|
|
| 111 |
|
| 112 |
# Create model description
|
| 113 |
st.sidebar.write(f"You're now chatting with **{selected_model}**")
|
| 114 |
-
st.sidebar.markdown(model_info[selected_model]['description'])
|
| 115 |
-
st.sidebar.image(model_info[selected_model]['logo'])
|
| 116 |
st.sidebar.markdown("*Generated content may be inaccurate or false.*")
|
| 117 |
-
|
| 118 |
|
| 119 |
|
| 120 |
|
|
@@ -134,8 +122,8 @@ if st.session_state.prev_option != selected_model:
|
|
| 134 |
repo_id = model_links[selected_model]
|
| 135 |
|
| 136 |
|
| 137 |
-
st.subheader(f'
|
| 138 |
-
# st.title(f'ChatBot Using {selected_model}')
|
| 139 |
|
| 140 |
# Set a default model
|
| 141 |
if selected_model not in st.session_state:
|
|
@@ -155,17 +143,15 @@ for message in st.session_state.messages:
|
|
| 155 |
|
| 156 |
# Accept user input
|
| 157 |
if prompt := st.chat_input(f"Hi I'm {selected_model}, ask me a question"):
|
| 158 |
-
|
| 159 |
# Display user message in chat message container
|
| 160 |
with st.chat_message("user"):
|
| 161 |
st.markdown(prompt)
|
| 162 |
# Add user message to chat history
|
| 163 |
st.session_state.messages.append({"role": "user", "content": prompt})
|
| 164 |
-
|
| 165 |
|
| 166 |
# Display assistant response in chat message container
|
| 167 |
with st.chat_message("assistant"):
|
| 168 |
-
|
| 169 |
try:
|
| 170 |
stream = client.chat.completions.create(
|
| 171 |
model=model_links[selected_model],
|
|
@@ -196,5 +182,7 @@ if prompt := st.chat_input(f"Hi I'm {selected_model}, ask me a question"):
|
|
| 196 |
|
| 197 |
|
| 198 |
|
| 199 |
-
|
|
|
|
|
|
|
| 200 |
st.session_state.messages.append({"role": "assistant", "content": response})
|
|
|
|
| 1 |
|
| 2 |
+
|
| 3 |
+
# # initialize the client
|
| 4 |
+
# client = OpenAI(
|
| 5 |
+
# base_url="https://api-inference.huggingface.co/v1",
|
| 6 |
+
# api_key=os.environ.get('')#"hf_xxx" # Replace with your token
|
| 7 |
+
# )
|
| 8 |
+
|
| 9 |
import numpy as np
|
| 10 |
import streamlit as st
|
| 11 |
from openai import OpenAI
|
|
|
|
| 21 |
# initialize the client
|
| 22 |
client = OpenAI(
|
| 23 |
base_url="https://api-inference.huggingface.co/v1",
|
| 24 |
+
api_key=os.environ.get('HUGGINGFACEHUB_API_TOKEN') # Replace with your token
|
| 25 |
+
)
|
| 26 |
+
|
| 27 |
+
# Create supported models
|
| 28 |
+
model_links = {
|
| 29 |
+
"Meta-Llama-3.1-70B-Instruct": "meta-llama/Meta-Llama-3.1-70B-Instruct",
|
| 30 |
+
"Meta-Llama-3.1-8B-Instruct": "meta-llama/Meta-Llama-3.1-8B-Instruct",
|
| 31 |
+
"Meta-Llama-3.1-405B-Instruct-FP8": "meta-llama/Meta-Llama-3.1-405B-Instruct-FP8",
|
| 32 |
+
"Meta-Llama-3.1-405B-Instruct": "meta-llama/Meta-Llama-3.1-405B-Instruct",
|
| 33 |
+
"Mistral-Nemo-Instruct-2407": "mistralai/Mistral-Nemo-Instruct-2407",
|
| 34 |
+
"Meta-Llama-3-70B-Instruct": "meta-llama/Meta-Llama-3-70B-Instruct",
|
| 35 |
+
"Meta-Llama-3-8B-Instruct": "meta-llama/Meta-Llama-3-8B-Instruct",
|
| 36 |
+
"C4ai-command-r-plus": "CohereForAI/c4ai-command-r-plus",
|
| 37 |
+
"Aya-23-35B": "CohereForAI/aya-23-35B",
|
| 38 |
+
"Zephyr-orpo-141b-A35b-v0.1": "HuggingFaceH4/zephyr-orpo-141b-A35b-v0.1",
|
| 39 |
+
"Mixtral-8x7B-Instruct-v0.1": "mistralai/Mixtral-8x7B-Instruct-v0.1",
|
| 40 |
+
"Codestral-22B-v0.1": "mistralai/Codestral-22B-v0.1",
|
| 41 |
+
"Nous-Hermes-2-Mixtral-8x7B-DPO": "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
|
| 42 |
+
"Yi-1.5-34B-Chat": "01-ai/Yi-1.5-34B-Chat",
|
| 43 |
+
"Gemma-2-27b-it": "google/gemma-2-27b-it",
|
| 44 |
+
"Meta-Llama-2-70B-Chat-HF": "meta-llama/Llama-2-70b-chat-hf",
|
| 45 |
+
"Meta-Llama-2-7B-Chat-HF": "meta-llama/Llama-2-7b-chat-hf",
|
| 46 |
+
"Meta-Llama-2-13B-Chat-HF": "meta-llama/Llama-2-13b-chat-hf",
|
| 47 |
+
"Mistral-7B-Instruct-v0.1": "mistralai/Mistral-7B-Instruct-v0.1",
|
| 48 |
+
"Mistral-7B-Instruct-v0.2": "mistralai/Mistral-7B-Instruct-v0.2",
|
| 49 |
+
"Mistral-7B-Instruct-v0.3": "mistralai/Mistral-7B-Instruct-v0.3",
|
| 50 |
+
"Falcon-7b-Instruct": "tiiuae/falcon-7b-instruct",
|
| 51 |
+
"Starchat2-15b-v0.1": "HuggingFaceH4/starchat2-15b-v0.1",
|
| 52 |
+
"Gemma-1.1-7b-it": "google/gemma-1.1-7b-it",
|
| 53 |
+
"Gemma-1.1-2b-it": "google/gemma-1.1-2b-it",
|
| 54 |
+
"Zephyr-7B-Beta": "HuggingFaceH4/zephyr-7b-beta",
|
| 55 |
+
"Zephyr-7B-Alpha": "HuggingFaceH4/zephyr-7b-alpha",
|
| 56 |
+
"Phi-3-mini-128k-instruct": "microsoft/Phi-3-mini-128k-instruct",
|
| 57 |
+
"Phi-3-mini-4k-instruct": "microsoft/Phi-3-mini-4k-instruct",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
}
|
| 59 |
|
|
|
|
| 60 |
#Random dog images for error message
|
| 61 |
random_dog = ["0f476473-2d8b-415e-b944-483768418a95.jpg",
|
| 62 |
"1bd75c81-f1d7-4e55-9310-a27595fa8762.jpg",
|
|
|
|
| 91 |
# Create the sidebar with the dropdown for model selection
|
| 92 |
selected_model = st.sidebar.selectbox("Select Model", models)
|
| 93 |
|
| 94 |
+
# Create a temperature slider
|
| 95 |
temp_values = st.sidebar.slider('Select a temperature value', 0.0, 1.0, (0.5))
|
| 96 |
|
| 97 |
|
|
|
|
| 101 |
|
| 102 |
# Create model description
|
| 103 |
st.sidebar.write(f"You're now chatting with **{selected_model}**")
|
|
|
|
|
|
|
| 104 |
st.sidebar.markdown("*Generated content may be inaccurate or false.*")
|
| 105 |
+
# st.sidebar.markdown("\n[TypeGPT](https://typegpt.net).")
|
| 106 |
|
| 107 |
|
| 108 |
|
|
|
|
| 122 |
repo_id = model_links[selected_model]
|
| 123 |
|
| 124 |
|
| 125 |
+
st.subheader(f'{selected_model}')
|
| 126 |
+
# # st.title(f'ChatBot Using {selected_model}')
|
| 127 |
|
| 128 |
# Set a default model
|
| 129 |
if selected_model not in st.session_state:
|
|
|
|
| 143 |
|
| 144 |
# Accept user input
|
| 145 |
if prompt := st.chat_input(f"Hi I'm {selected_model}, ask me a question"):
|
|
|
|
| 146 |
# Display user message in chat message container
|
| 147 |
with st.chat_message("user"):
|
| 148 |
st.markdown(prompt)
|
| 149 |
# Add user message to chat history
|
| 150 |
st.session_state.messages.append({"role": "user", "content": prompt})
|
| 151 |
+
|
| 152 |
|
| 153 |
# Display assistant response in chat message container
|
| 154 |
with st.chat_message("assistant"):
|
|
|
|
| 155 |
try:
|
| 156 |
stream = client.chat.completions.create(
|
| 157 |
model=model_links[selected_model],
|
|
|
|
| 182 |
|
| 183 |
|
| 184 |
|
| 185 |
+
|
| 186 |
+
|
| 187 |
+
|
| 188 |
st.session_state.messages.append({"role": "assistant", "content": response})
|