Upload 2 files
Browse files- app.py +123 -0
- avito_cars.csv +0 -0
app.py
ADDED
|
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
| 3 |
+
from sklearn.preprocessing import normalize
|
| 4 |
+
from sklearn.decomposition import TruncatedSVD
|
| 5 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
| 6 |
+
import pandas as pd
|
| 7 |
+
|
| 8 |
+
# Load the dataset
|
| 9 |
+
dataset = pd.read_csv('avito_cars.csv')
|
| 10 |
+
|
| 11 |
+
# Combine relevant columns into 'content'
|
| 12 |
+
dataset['content'] = (
|
| 13 |
+
dataset['Marque'] + " " +
|
| 14 |
+
dataset['Modèle'] + " " +
|
| 15 |
+
dataset['Type de carburant'] + " " +
|
| 16 |
+
dataset['Boite de vitesses']
|
| 17 |
+
)
|
| 18 |
+
dataset = dataset.drop_duplicates(subset=['content']) # Remove duplicates
|
| 19 |
+
|
| 20 |
+
# Preprocess and build TF-IDF and LSI
|
| 21 |
+
vectorizer = TfidfVectorizer(stop_words=None)
|
| 22 |
+
tfidf_matrix = vectorizer.fit_transform(dataset['content'])
|
| 23 |
+
|
| 24 |
+
n_components = 50 # Number of LSI dimensions
|
| 25 |
+
svd = TruncatedSVD(n_components=n_components)
|
| 26 |
+
lsi_matrix = svd.fit_transform(tfidf_matrix)
|
| 27 |
+
lsi_matrix = normalize(lsi_matrix)
|
| 28 |
+
|
| 29 |
+
# Search function
|
| 30 |
+
def search(query, top_n=100):
|
| 31 |
+
query_tfidf = vectorizer.transform([query])
|
| 32 |
+
query_lsi = svd.transform(query_tfidf)
|
| 33 |
+
query_lsi = normalize(query_lsi)
|
| 34 |
+
similarities = cosine_similarity(query_lsi, lsi_matrix).flatten()
|
| 35 |
+
top_indices = similarities.argsort()[-top_n:][::-1]
|
| 36 |
+
results = dataset.iloc[top_indices]
|
| 37 |
+
return results, similarities[top_indices]
|
| 38 |
+
|
| 39 |
+
# Streamlit Interface
|
| 40 |
+
st.title("Moteur de recherche de voitures basé sur le LSI (Latent Semantic Indexing)")
|
| 41 |
+
st.write("Recherchez des voitures en utilisant des mots-clés (par ex. : 'Peugeot Diesel Manuelle').")
|
| 42 |
+
|
| 43 |
+
# User input
|
| 44 |
+
query = st.text_input("Entrez votre requête de recherche :")
|
| 45 |
+
top_n = st.slider("Nombre de résultats à afficher par page :", min_value=3, max_value=12, step=3, value=6)
|
| 46 |
+
|
| 47 |
+
# Pagination logic
|
| 48 |
+
if "page" not in st.session_state:
|
| 49 |
+
st.session_state.page = 1
|
| 50 |
+
|
| 51 |
+
#if st.button("Previous Page"):
|
| 52 |
+
# st.session_state.page = max(1, st.session_state.page - 1)
|
| 53 |
+
|
| 54 |
+
#if st.button("Next Page"):
|
| 55 |
+
# st.session_state.page += 1
|
| 56 |
+
|
| 57 |
+
# Search and display
|
| 58 |
+
if st.button("Search") or query.strip():
|
| 59 |
+
results, similarities = search(query)
|
| 60 |
+
total_results = len(results)
|
| 61 |
+
results_per_page = top_n
|
| 62 |
+
total_pages = (total_results // results_per_page) + (1 if total_results % results_per_page != 0 else 0)
|
| 63 |
+
|
| 64 |
+
# Paginate results
|
| 65 |
+
start_idx = (st.session_state.page - 1) * results_per_page
|
| 66 |
+
end_idx = start_idx + results_per_page
|
| 67 |
+
paginated_results = results.iloc[start_idx:end_idx]
|
| 68 |
+
st.write(f"Showing results {start_idx + 1}-{min(end_idx, total_results)} of {total_results} (Page {st.session_state.page}/{total_pages}):")
|
| 69 |
+
|
| 70 |
+
# Start the grid layout
|
| 71 |
+
# Display cards in rows using Streamlit's `st.columns()`
|
| 72 |
+
for i, (index, row) in enumerate(paginated_results.iterrows()):
|
| 73 |
+
if i % 3 == 0: # Create a new row every 3 cards
|
| 74 |
+
cols = st.columns(3) # 3 cards per row
|
| 75 |
+
|
| 76 |
+
# Use the appropriate column in the row
|
| 77 |
+
with cols[i % 3]:
|
| 78 |
+
link = row['Lien']
|
| 79 |
+
st.markdown(
|
| 80 |
+
f"""
|
| 81 |
+
<div style="
|
| 82 |
+
border: 1px solid green;
|
| 83 |
+
border-radius: 10px;
|
| 84 |
+
padding: 10px;
|
| 85 |
+
background-color: #f9f9f9;
|
| 86 |
+
text-align: left;
|
| 87 |
+
height: auto;
|
| 88 |
+
margin-bottom: 20px;
|
| 89 |
+
">
|
| 90 |
+
<h5>{row['content']}</h5>
|
| 91 |
+
<p><strong>Année-Modèle:</strong> {row['Année-Modèle']}</p>
|
| 92 |
+
<p><strong>Price:</strong> {row['Prix']} MAD</p>
|
| 93 |
+
<p><strong>City:</strong> {row['Ville']}</p>
|
| 94 |
+
<p><strong>Kilométrage:</strong> {row['Kilométrage']} km</p>
|
| 95 |
+
<a href="{link}" target="_blank" style="
|
| 96 |
+
display: block;
|
| 97 |
+
margin: 10px auto 0 auto;
|
| 98 |
+
background-color: #4CAF50;
|
| 99 |
+
color: white;
|
| 100 |
+
padding: 5px 10px;
|
| 101 |
+
text-align: center;
|
| 102 |
+
text-decoration: none;
|
| 103 |
+
border-radius: 5px;">
|
| 104 |
+
View Details
|
| 105 |
+
</a>
|
| 106 |
+
</div>
|
| 107 |
+
""",
|
| 108 |
+
unsafe_allow_html=True,
|
| 109 |
+
)
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
# Pagination controls
|
| 116 |
+
st.write("Navigation:")
|
| 117 |
+
col1, col2, col3 = st.columns(3)
|
| 118 |
+
with col1:
|
| 119 |
+
if st.button("Previous"):
|
| 120 |
+
st.session_state.page = max(1, st.session_state.page - 1)
|
| 121 |
+
with col3:
|
| 122 |
+
if st.button("Next"):
|
| 123 |
+
st.session_state.page += 1
|
avito_cars.csv
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|